• 제목/요약/키워드: polymer material

검색결과 2,962건 처리시간 0.031초

Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials

  • Lee, Ki-Sun;Shin, Myoung-Sik;Lee, Jeong-Yol;Ryu, Jae-Jun;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권5호
    • /
    • pp.350-357
    • /
    • 2017
  • PURPOSE. The object of the present study was to evaluate the shear bonding strength of composite to PEKK by applying several methods of surface treatment associated with various bonding materials. MATERIALS AND METHODS. One hundred and fifty PEKK specimens were assigned randomly to fifteen groups (n = 10) with the combination of three different surface treatments (95% sulfuric acid etching, airborne abrasion with $50{\mu}m$ alumina, and airborne abrasion with $110{\mu}m$ silica-coating alumina) and five different bonding materials (Luxatemp Glaze & Bond, Visio.link, All-Bond Universal, Single Bond Universal, and Monobond Plus with Heliobond). After surface treatment, surface roughness and contact angles were examined. Topography modifications after surface treatment were assessed with scanning electron microscopy. Resin composite was mounted on each specimen and then subjected to shear bond strength (SBS) test. SBS data were analyzed statistically using two-way ANOVA, and post-hoc Tukey's test (P<.05). RESULTS. Regardless of bonding materials, mechanical surface treatment groups yielded significantly higher shear bonding strength values than chemical surface treatment groups. Unlike other adhesives, MDP and silane containing self-etching universal adhesive (Single Bond Universal) showed an effective shear bonding strength regardless of surface treatment method. CONCLUSION. Mechanical surface treatment behaves better in terms of PEKK bonding. In addition, self-etching universal adhesive (Single Bond Universal) can be an alternative bonding material to PEKK irrespective of surface treatment method.

An Experimental Study on the Mechanical Properties of Porous Concrete Using Coal Ash and Polymer (석회석 골재를 사용한 강섬유보강 포러스콘크리트의 강도특성에 관한 실험적 연구)

  • Lee, Byung-Jae;Park, Seong-Bum;Jang, Young-Il;Jeon, Heum-Jin;Lee, Taek-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.685-688
    • /
    • 2008
  • Concrete is strong on the compressive property, but weak on the tensile and flexural properties. To improve these problems, the reinforcing bar is used in concrete. But porous concrete with steel fiber has a weak point when exposed to air, because porous concrete has the vast continuous void on its inside and steel fiber is easily rusted by air. For these reasons, this study investigated the void ratio, compressive strength, bending strength and bending toughness as steel fiber mixing ratio and target void ratio. From test results, actual void ratio and strength properties increased as the mixing ratio of steel fiber increase. In case the mixing ratio of steel fiber over the fixed ratio, strength is decreased. And from the toughness evaluation, compared to the porous concrete which isn't mixed with steel fiber, the deflection variation efficiency is remarkably improved. Consequently we can confirm the possibility of porous concrete with steel fiber for the secondary product and pavement material to improve strength and bending resistance efficiency.

  • PDF

The Effect of Silk Fibroin Particles Coated with Hydroxyapatites on Bone Regeneration in the Rat Calvarial Defect Model (백서 두개골 결손모델에서 하이드록시아파타이트 입자로 입혀진 실크단백이 골재생에 미치는 영향)

  • Seok, Hyun;Park, Young-Tae;Kim, Seong-Gon;Jin, Hyung-Joon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제35권1호
    • /
    • pp.13-17
    • /
    • 2013
  • Purpose: This study evaluated the capability of bone formation of silk fibroin particles coated with hydroxyapatites (HA/SF), as bone graft material when put into the calvarial defect of rats. Methods: Twenty Sprague Dawley rats were used for this study and round shaped defects were formed in the center of parietal bones (diameter: 8.0 mm). The defect was filled with (1) HA/SF (experimental group), or (2) left as a vacant space (control group). The animals were sacrificed at 4 or 8 weeks, postoperatively. The specimens were decalcified and stained with Masson's trichrome for histomorphometric analysis. Results: The average of new bone formation was $33.18{\pm}3.10%$ in the experimental group and $20.49{\pm}5.79%$ in the control group at 4 weeks postoperatively. That was $42.52{\pm}7.74%$ in the experimental group and $25.50{\pm}7.31%$ in the control group at 8 weeks postoperatively. The difference between the groups was significantly higher at both 4 weeks and 8 weeks postoperatively (P<0.05). Conclusion: The rat calvarial defect was successfully repaired by HA/SF graft. The HA/SF graft showed more new bone formation compared with the unfilled control.

Identification and Characteristics of Lactic Acid Bacteria Isolated from Shellfishes (패류로부터 젖산 세균의 분리 및 특성)

  • Kang, Chang-Ho;Jeong, Ho-Geon;Koo, Ja-Ryong;Jeon, Eun-Jin;Kwak, Dae-Yung;Hong, Chae-Hwan;Kim, Si-Hwan;Seo, Ji-Yeon;Han, Do-Suck;So, Jae-Seong
    • KSBB Journal
    • /
    • 제27권3호
    • /
    • pp.151-156
    • /
    • 2012
  • Lactic acid is an important product arising from the anaerobic fermentation by lactic acid bacteria (LAB). It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. The poly lactic acid (PLA) is an important material for bio-plastic manufacturing process. For PLA production by new LAB, we screened LAB isolates from shellfish. A total of 28 LAB were isolated from various shellfishes. They were all Gram positive, oxidase and catalase negative. Based on API 50CHL kit, 7 strains among the 28 isolates were identified as Lactobacillus plantarum, 6 strains as Lactobacillus delbrueckii, 5 strains as Leuconostoc mesenteroides, 3 strains as Lactobacillus brevis, 2 strains as Lactococcus lactis, 1 strain as Lactobacillus salivarius, 1 strain as Lactobacillus paracasei, 1 strain as Lactobacillus pentosus, 1 strain as Lactobacillus fermentum and 1 strain as Pediococcus pentosaceu. Also, we examined the amount of total lactic acid produced by these new strains by HPLC analysis with Chiralpak MA column. One strain E-3 from Mytilus edulis was indentified as Lactobacillus plantarum and found to produce 20.0 g/L of D-form lactic acid from 20 g/L of dextrose. Further studies are underway to increase the D-lactic acid production by E-3.

In vitro and in vivo studies on theophylline mucoadhesive drug delivery system

  • Bandyopadhyay, AK;Perumal, P
    • Advances in Traditional Medicine
    • /
    • 제7권1호
    • /
    • pp.51-64
    • /
    • 2007
  • Mucus is an aqueous gel complex with a constitution of about 95% water, high molecular weight glycoprotein (mucin), lipid, salts etc. Mucus appears to represent a significant barrier to the absorption of some compounds. Natural mucoadhesive agent was isolated and purified from the aqueous extract of the seeds of prosopis pallida (PP). Formulated tablet with the isolated material by wet granulation method. Some natural edible substances are in consideration for candidates as mucoadhesive agents to claim more effective controlled drug delivery as an alternative to the currently used synthetic mucoadhesive polymers. Subjected the materials obtained from natural source i.e. PP and standard synthetic substance, sodium carboxymethyl cellulose for evaluation of mucoadhesive property by various in vitro and in vivo methods. Through standard dissolution test and a model developed with rabbit, evaluated in vitro controlled release and bioadhesive property of theophylline formulation. Mucoadhesive agent obtained from PP showed good mucoadhesive potential in the demonstrated in vitro and in viνo models. The results suggest that the mucoadhesive agent showed controlled release properties by their application, substantially. In order to assess the gastrointestinal transit time in vivo, a radio opaque X-ray study performed in healthy rabbit testing the same controlled release formulation with and without bioadhesive polymer. Plasma levels of theophylline determined by the HPLC method and those allowed correlations to the in vitro mucoadhesive study results. Better correlation found between the results in different models. PP may acts as a better natural mucoadhesive agent in the extended drug delivery system.

A STUDY ON THE CONTACT ANGLE AND WETTABILITY OF THE DENTAL STONES (수종 치과용 석고의 접촉각 및 젖음성에 관한 비교 연구)

  • Cho Lee-Ra;Chung Kyung-Ho;Kim Kyoung-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제41권1호
    • /
    • pp.61-70
    • /
    • 2003
  • The purpose of this study was to investigate the contact angles and wettability of conventional dental stones and improved dental stones and newly developed dental stones on several impression materials. Materials included in this study were several dental stones and newly developed dental stone ; 2 type III stones (Snow Rock, New Diastone), 6 type IV stones(Crystal Rock, Vel Mix, Fuji Rock, Tuff Rock, Resin Rock and newly developed dental stone) and 1 type V stone (Die Keen). Contact angles on the impression materials were measured with contact angle measuring device. Ten specimens for each material, total 180 specimens were made on void entrapment model. The two impression materials (Handae, GC) were used to produce 9 groups of die stone casts form void entrapment model. Voids in the stone casts were counted under a stereoscopic microscope. The grad for the reproduction ability of each materials on the void entrapment model was calculated from the casts by one examiner. From the experiment, the following results were obtained : 1. The newly developed stones showed smallest contact angle. Type III dental stone had larger contact angles than type IV and V stones. Contact angle was much affected by the impression materials. 2. Resin containing die materials such as Tuff Rock and Resin Rock had smallest void number than any other groups. 3. In comparing reproduction parameters, Tuff Rock and Resin Rock presented superior results, while Vel Mix showed lowest reproduction ability.

Parametric Analysis on Ultimate Behavior of Cylindrical GFRP Septic Tank (원통형 GFRP 개인하수 처리시설의 극한거동에 대한 매개변수해석)

  • Kim, Sung Bo;Cho, Kwang Je
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제33권4호
    • /
    • pp.1337-1347
    • /
    • 2013
  • The parametric analysis on ultimate behavior of buried cylindrical GFRP(Glass Fiber Reinforced Polymer) septic tank was presented. Two kinds of F.E. analysis model(soil-spring model and 3D full model) was constructed. The ultimate behavior of septic tank was investigated according to the size of stiffened steel ring and properties of underground soil. Ramberg-Osgood model and Druker-Prager model were used for material nonlinear characteristics of GFRP septic tank and soil, respectively. The diameter and thickness of stiffened steel ring inside septic tank, elastic modulus and internal friction angle of soil were selected for parametric variables. The ultimate behavior of septic tank, load-displacement, axial and hoop strain, were calculated and investigated.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

Preparation and Physical Properties of Hydrogle Lens Containing N,N-Dimethylacrylamide (N,N-Dimethylacrylamide를 포함한 하이드로젤 렌즈의 제조 및 물리적 특성)

  • Kim, Tae-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • 제54권6호
    • /
    • pp.761-765
    • /
    • 2010
  • Poly (N,N-dimethylacrylamide) is very useful in various fields due to its remarkable properties, such as water solubility and biocompatibility. This study used N,N-dimethylacrylamide with the cross-linker EGDMA (ethylene glycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate), MMA (methyl methacrylate), NVP (N-vinyl-2-pyrrolidone) and the initiator AIBN (azobisisobutyronitrile) for copolymerization. Measurement of the physical properties of the copolymerized polymer showed that the water content was 36 - 42%, refractive index was 1.433 - 1.426 and visible ray transmittance 90 - 91% while the oxygen permeability showed a distribution between 13.1 and $21.29{\times}10^{-11}(cm^2/sec)$ ($mlO_2/mL{\times}mmHg$). The measurement showed that the increased amount of oxygen permeability of the copolymer measured using the polarographic method range between 11.0% and 80.5%. Based on the results of this study, the produced copolymer is suitable for use as a material to high oxygen permeability hydrogel lenses.

Critical Cleaning Requirements for Flip Chip Packages

  • Bixenman, Mike;Miller, Erik
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 한국마이크로전자및패키징학회 2000년도 Proceedings of 5th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.43-55
    • /
    • 2000
  • In traditional electronic packages the die and the substrate are interconnected with fine wire. Wire bonding technology is limited to bond pads around the peripheral of the die. As the demand for I/O increases, there will be limitations with wire bonding technology. Flip chip technology eliminates the need for wire bonding by redistributing the bond pads over the entire surface of the die. Instead of wires, the die is attached to the substrate utilizing a direct solder connection. Although several steps and processes are eliminated when utilizing flip chip technology, there are several new problems that must be overcome. The main issue is the mismatch in the coefficient of thermal expansion (CTE) of the silicon die and the substrate. This mismatch will cause premature solder Joint failure. This issue can be compensated for by the use of an underfill material between the die and the substrate. Underfill helps to extend the working life of the device by providing environmental protection and structural integrity. Flux residues may interfere with the flow of underfill encapsulants causing gross solder voids and premature failure of the solder connection. Furthermore, flux residues may chemically react with the underfill polymer causing a change in its mechanical and thermal properties. As flip chip packages decrease in size, cleaning becomes more challenging. While package size continues to decrease, the total number of 1/0 continue to increase. As the I/O increases, the array density of the package increases and as the array density increases, the pitch decreases. If the pitch is decreasing, the standoff is also decreasing. This paper will present the keys to successful flip chip cleaning processes. Process parameters such as time, temperature, solvency, and impingement energy required for successful cleaning will be addressed. Flip chip packages will be cleaned and subjected to JEDEC level 3 testing, followed by accelerated stress testing. The devices will then be analyzed using acoustic microscopy and the results and conclusions reported.

  • PDF