• Title/Summary/Keyword: polymer etching

Search Result 161, Processing Time 0.025 seconds

Bathochromic Finish of Dyed Fabrics by Low-Temperature Plasma and Sputter Etching Treatment (저온 플라즈마 및 Sputter Etching 처리에 의한 염색직물의 심색화 가공)

  • Pak, Pyong Ki;Lee, Mun Cheul;Park, Geon Yong
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.56-63
    • /
    • 1996
  • Low-temperature plasma treatment or sputter etching is of interest as one of the techniques to modify polymer surface. In this study, poly(ethylene terephthalate)(PET), nylon 6 and cotton fabrics dyed three black dyes were subjected to low-temperature argon plasma and also sputter etching. In relation to bathochromic effect, the surface characteristics of the treated fabrics and films were investigated by means of critical surface tension, SEM and ESCA measurement. The depth of shade of fabrics more increased by the sputter etching technique than argon plasma treatment. Many microcraters on the fiber surface formed by the sputter etching resulted in increase of surface area of the fiber and wettability, but the hydrophobic group was increased by the results of ESCA analysis. In particular the change in reflective index of the fibers was much more effective than the chemical composition of the fiber surface on increasing of the depth of shade.

  • PDF

Fabrication of Large Area Silicon Mirror for Integrated Optical Pickup (집적형 광 픽업용 대면적 실리콘 미러 제작)

  • Kim, Hae-Sung;Lee, Myung-Bok;Sohn, Jin-Seung;Suh, Sung-Dong;Cho, Eun-Hyoung
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.182-187
    • /
    • 2005
  • A large area micro mirror is an optical element that functions as changing an optical path by reflection in integrated optical system. We fabricated the large area silicon mirror by anisotropic etching using MEMS for implementation of integrated optical pickup. In this work, we report the optimum conditions to better fabricate and design, greatly improve mirror surface quality. To obtain mirror surface of $45^{\circ},\;9.74^{\circ}$ off-axis silicon wafer from (100) plane was used in etching condition of $80^{\circ}C$ with 40wt.% KOH solution. After wet etching, polishing process by MR fluid was applied to mirror surface for reduction of roughness. In the next step, after polymer coating on the polished Si wafer, the Si mirror was fabricated by UV curing using a trapezoid bar-type way structure. Finally, we obtained peak to valley roughness about 50 nm in large area of $mm^2$ and it is applicable to optical pickup using blu-ray wavelength as well as infrared wavelength.

  • PDF

Synthesis and Etch Characteristics of Organic-Inorganic Hybrid Hard-Mask Materials (유-무기 하이브리드 하드마스크 소재의 합성 및 식각 특성에 관한 연구)

  • Yu, Je-Jeong;Hwang, Seok-Ho;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1993-1998
    • /
    • 2011
  • Semiconductor industry needs to have fine patterns in order to fabricate the high density integrated circuit. For nano-scale patterns, hard-mask is used to multi-layer structure which is formed by CVD (chemical vaporized deposition) process. In this work, we prepared single-layer hard-mask by using organic-inorganic hybrid polymer for spin-on process. The inorganic part of hard-mask was much easier etching than photo resist layer. Beside, the organic part of hard-mask was much harder etching than substrate layer. We characterized the optical and morphological properties to the hard mask films using organic-inorganic hybrid polymer, and then etch rate of photo resist layer and hard-mask film were compared. The hybrid polymer prepared from organic and inorganic materials was found to be useful hard-mask film to form the nano-patterns.

Recent development of polymer optical circuits for the next generation fiber to the home system

  • Kaino, Toshikuni
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.13-14
    • /
    • 2006
  • The use of soft-lithography instead of standard photolithography and dry etching technologies is attractive because inexpensive optical device can be realized. Polymerization using multi-photon absorption of materials is also a good method for optical waveguide fabrication. Laser induced self-writing technology of optical waveguide is also very simple and attractive. Using these processes, we can fabricate and interconnect optical circuits at once. In this presentation, several simple fabrication methods will be introduced. New optical loss evaluation method for polymer optical waveguides will also be presented

  • PDF

Study of Characteristics Variation of Etching according to Gas Flow in Poly-Si Dry Etching using ICP Poly Etcher (ICP Poly Etcher를 이용한 Poly-Si Dry Etch시 Gas Flow에 따른 Etching 특성 변화 연구)

  • Kim, Dong-Il;Han, Seung-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.180-181
    • /
    • 2015
  • 본 논문에서는 ICP Poly Etcher를 이용한 Dry Etch에서 몇가지 공정조건의 변화에 따른 Etching 특성 변화를 연구하였다. 주요 가스유량들이 증가 할 때, Poly-Si 의 Etch rate는 증가 하였으며 Uniformity는 나빠진 것을 확인 할 수 있었고 다른 특성들은 특별한 변화를 보이지 않았다. 주요 Gas인 HBr의 증가는 PR(Photo Resist)와 Uniformity에 영향을 주었다. 이 논문을 통해 HBr의 유량이 Poly-Si Etching에 영향을 주는 결과를 알아 볼 수 있었고 HBr 가스의 유량 증가가 Polymer의 생성에 영향을 줘 Selectivity와 Uniformity를 증가 시킨다는 것도 확인 해 볼 수 있었다.

  • PDF

Fabrication of a Silicon Nanostructure Array Embedded in a Polymer Film by using a Transfer Method (전사방법을 이용한 폴리머 필름에 내재된 실리콘 나노구조물 어레이 제작)

  • Shin, Hocheol;Lee, Dong-Ki;Cho, Younghak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • This paper presents a silicon nanostructure array embedded in a polymer film. The silicon nanostructure array was fabricated by using basic microelectromechanical systems (MEMS) processes such as photolithography, reactive ion etching, and anisotropic KOH wet etching. The fabricated silicon nanostructure array was transferred into polymer substrates such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) through the hot-embossing process. In order to determine the transfer conditions under which the silicon nanostructures do not fracture, hot-embossing experiments were performed at various temperatures, pressures, and pressing times. Transfer was successfully achieved with a pressure of 1 MPa and a temperature higher than the transition temperature for the three types of polymer substrates. The transferred silicon nanostructure array was electrically evaluated through measurements with a semiconductor parameter analyzer (SPA).

Fabrication of Silicon Nanotemplate for Polymer Nanolens Array

  • Cho, Si-Hyeong;Kim, Hyuk-Min;Lee, Jung-Hwan;Venkatesh, R. Prasanna;Rizwan, Muhammad;Park, Jin-Goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.37.1-37.1
    • /
    • 2011
  • Miniaturization of lenses has been widely researched by various scientific and engineering techniques. As a result, micro scaled lens structure could be easily achieved from various fabrication techniques; nevertheless it is still challenging to make nano scaled lenses. This paper reports a novel fabrication method of silicon nanotemplate for nanolens array. The inverse structure of nanolens array was fabricated on silicon substrate by reactive ion etching (RIE) process. This technique has a flexibility to produce different tip shapes using different pattern masks. Once the silicon nano-tip array structure is well-defined using an optimized recipe, it is followed by polymer molding to duplicate nanolens array from the template. Finally, the nanostructures formed on silicon nanotemplate and polymer replica were investigated using FE-SEM and AFM measurements. The nano scaled lens can be manufactured from the same template, also using other replication techniques such as imprinting, injection molding and so on.

  • PDF

The Improvement of Profile Tilt in High Aspect Ratio Contact (컨택 산화막 에칭에서의 바닥 모양 찌그러짐 변형 개선)

  • Hwang, Won-Tae;Choi, Sung-Gil;Kwon, Sang-Dong;Im, Jang-Bin;Jung, Sang-Sup;Park, Young-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.666-670
    • /
    • 2004
  • VLSI 소자에서 design rule(D/R)이 작아져 각 단위 Pattern의 size가 작아짐에 따라 aspect ratio가 커지게 되었다. 산화막 contact etch를 하는데 있어 산화막 측벽을 보호하는데, 이러한 보호막은 주로 fluoro-carbon 계열의 polymer precursor들이 사용된다. Aspect ratio(A/R)가 5 이하일 때에는 측벽의 보호막에 의한 바닥 변형이 문제가 되지 않으나, 10 이상의 A/R를 가진 contact에서는 크기가 줄고, 모양이 불균형하게 변하는 바닥 변형을 쉴게 관찰할 수 있다. 이러한 바닥 변형이 커지면 contact 저항이 높아지는 것은 물론이고, 심하게는 하부 pattern과 overlap 불량을 유발할 수 있다. 본 논문에서는 바닥변형을 일으키는 원인을 분석하고 fluoro-carbon 계열의 polymer precursor의 종류$(C_4_F6\;vs.\;C_3F_8)$에 따른 polymer증착 상태 확인 및 pattern비대칭에 따른 바닥 변형의 고찰과 plasma etching 시 H/W 변형을 통해 바닥 변형이 거의 없는 조건을 찾아낼 수 있었다.

  • PDF