• Title/Summary/Keyword: polymer electrolyte membrane fuel cells

검색결과 224건 처리시간 0.028초

수전해 수소충전소 부품별 유해위험요인 분석 (A Study on the Analysis of Hazardous Risk Factors for Component in Hydrogen Station with Water Electrolysis Device)

  • 서두현;이광원;김태훈
    • 한국가스학회지
    • /
    • 제23권6호
    • /
    • pp.33-38
    • /
    • 2019
  • 제조식 수소충전소에서 생산되는 수소가스는 일반적으로 석탄연료의 개질 및 부생가스 등을 활용하지만 순수물을 활용한 수전해 기술의 경우 청정한 기술로 각광 받고 있다. 전기에너지를 이용하여 순수한 물로부터 수소를 생산하는 기술 중에는 향후 가격 및 성능 경쟁에서 우수한 PEM(Polymer Electrolyte Membrane electrolysis)을 이용한 개발이 주로 이루어지고 있다. 이에 본 연구에서는 국내 수소충전소 중 개발단계에 있는 PEM 수전해 수소충전소에 대해 잠재된 유해위험요소를 확인하여 안전한 수소생산 및 수소충전소의 활성화를 도모하고자 한다. 유해위험요소를 도출하기 위해서는 수전해 수소충전소의 설비 및 장치의 안전성이 우선 확보되어야하기에 FMEA(Failure Mode & Effect Analysis)를 수행함으로써 수전해 및 수소충전소의 설비에서의 유해위험요인을 분석하였다.

GDL을 고려한 고분자전해질형 연료전지 모사 단위 유로 채널에서의 물방울 유동 특성에 대한 실험적인 고찰 (Experimental Investigation of the Water Droplet Dynamics inside the Simulated PEMFC Single Flow Channel with GDL)

  • 김한상;지용휘;인지헌;안지용
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.76-83
    • /
    • 2013
  • Polymer electrolyte membrane fuel cells (PEMFCs) are regarded as a promising alternative to replace the existing automotive power sources. To get high performance and long-term durability for PEMFC systems, novel water management is essential. To this end, a comprehensive understanding of dynamics of the liquid water droplets within an operating PEMFC plays an important role. In this work, direct visualization of dynamic behaviors of the water droplet in the ex situ unit flow channel of a PEMFC including gas diffusion layer (GDL) is carried out as one of the fundamental studies for novel water management. Water droplet dynamics such as the movement and growth of liquid water droplets are mainly presented. Effects of GDL characteristics and inlet air flow rate on the water droplet transport and its removal from the flow channel are also discussed. The data obtained in this study can contribute to build up the fundamental operating strategy including balanced water removal capacity for automotive PEMFC systems.

설폰화 폴리아닐렌 공중합체 합성 및 특성 (Synthesis and characterization of sulfonated poly(arylene ether sulfone) copolymer with modified bisphenol)

  • Kim, Dae-Sik;Shin, Kwang-Ho;Park, Ho bum;Lee, Young-Moo
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 춘계 총회 및 학술발표회
    • /
    • pp.133-135
    • /
    • 2004
  • A direct methanol fuel cells (DMFCs) using polymer electrolyte membranes are one of the most attractive power sources for a wide range of application from vehicles to portable utilities due to the stable operation at a rarely low temperature, the high energy generation yield and energy density, the simplicity of system.(omitted)

  • PDF

TiN이 코팅된 316 스테인리스강 분리판을 이용한 고분자전해질 연료전지의 성능에 관한 연구 (A Study on the Performance of PEMFC Using the TiN-Coated 316 Stainless Steel Bipolar Plates)

  • 조은애
    • 한국수소및신에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.291-297
    • /
    • 2003
  • As an alternative bipolar plate material for polymer electrolyte membrane fuel cell (PEMFC), TiN-coated 316 stainless was evaluated in terms of electrical contact resistance and water contact angle. Performance and lifetime of the TiN-coated 316 bipolar plates were measured in comparison with those of graphite and bare 316 bipolar plates. At a cell voltage of 0.6 V, current density of the single cells using graphite, AISI 316, and TiN/316 bipolar plates was 996, 796, and $896mA/cm^2$, respectively. By coating 316 stainless steel with TiN layer, performance degradation rate determined to be the voltage degradation rate at a cell voltage of 0.6 V was reduced from 2.3 to 0.43 mV/h.

통합 열관리 시스템의 제어를 위한 수소-전기 하이브리드 기반 고정밀 소형 선박 시뮬레이터 모델 개발 (Development of a High-precision Small Ship Simulator Model Based on Hydrogen-electric Hybrid to Control an Integrated Thermal Management System)

  • 안민우;현대일;한재영
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.230-239
    • /
    • 2024
  • Efforts are being made to replace ship diesel engines with electric propulsion motors in response to emission regulations. In particular, in the case of short-range small ships, research is being conducted to replace polymer electrolyte membrane fuel cells (PEMFC) with power sources. However, PEMFC has problems such as slow dynamic response characteristics and reduced durability at high temperatures. To solve this problem, a high-precision ship model was developed with power distribution and thermal management strategies applied, and through this, the required power, heat, and power characteristics of the propulsion system according to the ship's speed profile were analyzed.

연료전지에의 적용을 위한 혐기성 소화가스의 정제, 고질화 및 메탄개질 기술 (Process Technologies of Reforming, Upgrading and Purification of Anaerobic Digestion Gas for Fuel Cells)

  • 배민수;이종연;이종규
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.135-143
    • /
    • 2016
  • Biogas is a renewable fuel from anaerobic digestion of organic matters such as sewage sludge, manure and food waste. Raw biogas consists mainly of methane, carbon dioxide, hydrogen sulfide, and water. Biogas may also contain other impurities such as siloxanes, halogenated hydrocarbons, aromatic hydrocarbons. Efficient power technologies such as fuel cell demand ultra-low concentration of containments in the biogas feed, imposing stringent requirements on fuel purification technology. Biogas is upgraded from pressure swing adsorption after biogas purification process which consists of water, $H_2S$ and siloxane removal. A polymer electrolyte membrane fuel cell power plant is designed to operate on reformate produced from upgraded biogas by steam reformer.

PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조 (Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis)

  • 정윤교;이혁재;장인영;황갑진;배기광;심규성;강안수
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

공기공급 조건이 스택성능에 미치는 영향 (The effect of PEMFC stack performance at air supply condition)

  • 박창권;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제19권3호
    • /
    • pp.232-238
    • /
    • 2008
  • Research has been proceeded on fuel cell which is fueled by hydrogen. Polymer electrolyte membrane fuel cell (PEMFC) is promising power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, temperature dependent performance. These problems could be solved by experiment which is useful for analysis and optimization of fuel cell performance and heat management. In this paper, when hydrogen flows constantly at the stoichiometry of ${\xi}=1.6$, the performance of the fuel cell stack was increased and the voltage difference between each cells was decreased according to the increase of air stoichiometry by 2.0, 2.5, 3.0. Therefore, the control of air flow rate in the same gas channel is important to get higher performance. Purpose of this research is to expect operation temperature, flow rate, performance and mass transportation through experiment and to help actual manufacture of PEM fuel cell stack.

Comparison of Electrode Backing Materials for Polymer Electrolyte Membrane Fuel Cells

  • Sasikumar, G.;Ryu, H.
    • 전기화학회지
    • /
    • 제6권3호
    • /
    • pp.183-186
    • /
    • 2003
  • In a PEM fuel cell electrode, backing layer has tremendous impact on electrode performance. The backing layer provides structural support for the porous electrode, distributes the reactants to the other layers and acts as a current collector. It has major influence on the water management in a PEM fuel cell. Selection of suitable backing layer material for the fabrication of electrode is thus very important to achieve high performance. In this paper we have compared the performance of PEM fuel cell electrodes fabricated using carbon paper EC-TPI-060T, carbon cloth EC-CCI-060T, (ElectroChem Inc.USA) and Carbon cloth from Textron, USA (CPW 003 grade). Mass transport problem was observed under non-pressurized condition, at high current densities, in the caie of EC-CC1-060T carbon cloth electrode (at $50^{\circ}C$), due to its higher thickness. The performance of carbon paper electrode was higher than EC-CCI-060T carbon cloth electrode. The performance of Textron carbon cloth was comparable to EC-TPI -060T carbon paper.

NaBH4를 이용한 수소발생반응의 촉매에 관한 연구 (A Study on the Catalysts for Hydrogen Generation Reaction Using NaBH4 Solution)

  • 정성욱;조은애;오인환;홍성안;김성현;서용교
    • 한국수소및신에너지학회논문집
    • /
    • 제14권2호
    • /
    • pp.114-121
    • /
    • 2003
  • Hydrogen generation system using aqueous $NaBH_4$ solution was developed for feeding small polymer electrolyte membrane fuel cells (PEMFCs). Ru was selected as a catalyst with its high activity for the hydrogen generation reaction. Hydrogen generation rate was measured with changing the solution temperature, amount of catalyst loading, $NaBH_4$ concentration, and NaOH (a base-stabilizer) concentration. A passive air-breathing 2 W PEMFC stack was operated on hydrogen generated using $20wt%\;NaBH_4+5wt%$ NaOH solution and Ru catalyst.