• Title/Summary/Keyword: polymer column

Search Result 190, Processing Time 0.025 seconds

Effect of load eccentricity on buckling behavior of FRP composite columns with open and closed cross sections

  • M Kasiviswanathan;M Anbarasu
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.61-76
    • /
    • 2023
  • Fiber reinforced polymer (FRP) columns are increasingly being used in various engineering fields due to its high strength to weight ratio and corrosion resistance. Being a thin-walled structure, their designs are often governed by buckling.Buckling strength depends on state of stress of elements which is greatly influence by stacking sequence and various inaccuracies such as geometric imperfections and imperfections due to eccentricity of compressive load and non-uniform boundary conditions. In the present work, influence of load eccentricity on buckling strength of FRP column has been investigated by conducting parametric study. Numerical analyses were carried out by using finite element software ABAQUS. The finite element (FE) model was validated using experimental results from the literature, which demonstrated good agreement in terms of failure loads and deformed shapes.The influence of load eccentricity on buckling behavior is discussed with the help of developed graphs.

Recovery of Lactic Acid Using Reactive Dividing Wall Column (분리벽형 반응증류탑을 이용한 젖산회수)

  • Woo, Daesik;Cho, Youngmin;Kim, Bo-kyung;Hwang, Hwidong;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.342-349
    • /
    • 2010
  • Lactic acid is widely used in the food, chemical and pharmaceutical industries, and there is an increasing demand for lactic acid as the raw material of poly lactic acid(PLA), which is a biodegradable polymer. Lactic acid production has been changing over from production by synthesis to production by fermentation, since the fermentation process is more nature friendly and economic. However, the fermentation method generates excess water and impurities with high boilers. The presence of high boilers and non volatility of lactic acid makes the separation of lactic acid very difficult job. Also, the purification-separation process requires the many investment costs and energy costs. Reactive distillation concept was also introduced for the process, giving higher selectivity and yield compared to the convention method. We introduce a new highly integrated process, reactive diving wall column, to reduce the capital and energy cost for producing a pure lactic acid. The reactive dividing wall column combines reactive distillation and dividing wall column. We compared capital and energy consumption required for the purification of lactic acid the between the proposed design structures. And we examined the effect of major process variables on the process performance and determined optimal process.

An Experimental Study on Seismic Performance Evaluation of Retrofitted Column of FRP Seismic Reinforcement that can be Emergency Construction (긴급시공이 가능한 FRP 내진보강재로 보강된 기둥의 내진성능평가 실험)

  • Kim, Jin-Sup;Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Dong-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.21-30
    • /
    • 2013
  • As increasing number of large-size earthquake, the social interest of seismic retrofitting of RC structure is growing. Especially, the RC columns that are not reflected seismic design can not resist lateral loads by the earthquake. The brittle fracture of Non-seismic designed columns lead to full collapse of the building. Thus, the emergency columns reinforcement method is needed. That have a fast construction time, do not cause damage to the column. In the past, cross-sectional expansion method, a steel plate reinforcing method is applied mainly, but in recent years, carbon fiber sheet taking advantage of FRP (Fiber Reinforced Polymer) is widely used. In this study, retrofitting effect of seismic performance of FRP seismic reinforcement, which is possible to emergency construction, was examined. Reinforced concrete specimens were constructed to experimental study. The seismic performence of specimes retrifitted with FRP seismic reinforcement were evaluated. As a result, the seismic performance of specimen reinforced with FRP seismic reinforcement has been improved.

Axial Loading Behaviors of Square Concrete-Filled Tubular Columns with Large Width-to-Thickness Ratio Retrofitted using Carbon Fiber Reinforced Polymer Sheets(CFRP Sheets) (탄소섬유쉬트(CFRP Sheets)로 보강된 폭두께비가 큰 콘크리트 충전 각형강관 기둥의 중심축하중거동)

  • Park, Jai Woo;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.169-176
    • /
    • 2014
  • This paper presents the experimental results of behavior of square CFT columns with large the width-ro thickness ratio strengthened with carbon fiber reinforced polymers (CFRP) sheets subjected to concentrated axial loading. The main parameters were b/t ratio and the number of CFRP layers and 6 specimens were fabricated. The values of b/t were ranged from 60 to 100. From the tests, Maximum increase of 16% was also achieved in axial-load capacity with three transverse layered CFRP applied on four sides of steel tubes. The load capacity decreased up to 41% comparing with nominal load capacity of unstrengthened CFT column. However, for CFRP strengthened CFT, the load capacity decreased up to 32%. Finally, from the load-strain relationships, the local buckling occurred before yield point of steel tubes. Also, from the load-strain relationships, it was observed that local buckling were delayed on CFT columns by CFRP sheets retrofitting.

Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio

  • Narule, Giridhar N.;Bambole, Abhay N.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.679-687
    • /
    • 2018
  • In composite materials technology, the fiber-reinforced polymers (FRP) have opened up new horizons in infrastructural engineering field for strengthening existing structures and components of structure. The Carbon fiber reinforced polymer (CFRP) sheets are well suited for RC columns to this application because of their high strength to weight ratio, good fatigue properties and excellent resistance to corrosion. The main focus of present experimental work is to investigate effect of shapes on axial behavior of CFRP wrapped RC columns having same cross-sectional area and slenderness ratio. The CFRP volumetric ratio and percentage of steel are also adopted constant for all the test specimens. A total of 18 RC columns with slenderness ratio four were cast. Nine columns were control and the rest of nine columns were strengthened with one layer of CFRP wrap having 35 mm of corner radius. Columns confined with CFRP wrap were designed using IS: 456:2000 and ACI 440.2R.08 provisions. All the test specimens were loaded for axial compression up to failure and failure pattern for each shaped column was investigated. All the experimental results were compared with analytical values calculated as per the ACI-440.2R-08 code. The test results clearly demonstrated that the axial behavior of CFRP confined RC columns is affected with the change in shapes. The axial deformation is higher in CFRP wrapped RC circular column as compared to square and rectangular columns. Stress-strain behaviour revealed that the yield strength gained from CFRP confinement was significant for circular columns as compare to square and rectangular columns. This behaviour may be credited due to effect of shape on lateral deformation in case of CFRP wrapped circular columns at effective confinement action.

Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat;Belkacem, Adim
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Studies on analysis of the Korean lager beers. (I) "On the estimation of total carbohydrates, amino acids and peptides" (한국산 맥주성분에 관한 연구 (제 1 ) "Total carbohydrates, amino acids 및 peptides 의 정 에 관하여")

  • 한홍의;김종협
    • Korean Journal of Microbiology
    • /
    • v.6 no.2
    • /
    • pp.63-67
    • /
    • 1968
  • Total carbohydrates, amino acids and peptide-like substances in two kinds of Korean lager beers have been analyzed by the calorimetric method of Dreywood's anthrone reagent and Fowden's ninhydrin reagent. The samples were fractionated with column of ion-exchange resin. The experimental results are as follows; 1. Amounts of non-hydrolyzed carbohydrates in the part of column processed is 1. 82% and 1. 96 % (the value was measured by Bertrand's method). But the amounts of those measured by Dreywood's anthrone method are 5.57% and 4.25%, this values are much more than those of Bertrand's method. 2. It can be estimated the amounts of gum and dextrin are 3.75% and 3.30% in both two beers, by comparison of samples with the above mentioned two method. 3. The amounts of carbohydrates by anthrone reagent in acid-hydrolyzed beers are much increased than those of non-hydrolyzed, so it is suggested the presence of polymer carbohydrates which couldn't be detected by Bertrand's method. 4. Total amounts of amino acids are 0.015% and 0.025% (as glycine) in non-hydrolyzed beers measured by ninhydrine color reaction method, on the other hand the amount of amino acids in acid hydrolyzed beers are 0.06% and 0.056%, this is much more than those of nonhydrolysis. The different amounts means that of peptide-like substances. 5. It is necessary to determine the constituent of amino acid for the better taste of beer, and also it is desirable to check the role of carbohydrates in the course of fermentation, mashing and on lager beer for effective utilization of carbohydrate materials to eliminate the losses.

  • PDF

Hysteretic Behavior Evaluation of Reinforced Concrete Columns Retrofitted with Iron-based Shape Memory Alloy Strips (철계 형상기억합금 스트립으로 보강된 콘크리트 기둥의 반복이력거동 평가)

  • Jeong, Saebyeok;Jung, Donghyuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.287-297
    • /
    • 2022
  • This paper presents experimental and analytical studies on the lateral cyclic behavior of RC columns actively confined with iron-based shape memory alloy (Fe-SMA) strips. Based on the Anexperimental study, we investigated the effectiveness of active confinement through compression testings of concrete cylinders confined by Fe SMA strips and carbon fiber-reinforced polymer (CFRP) sheets. The test results showed that the specimens confined with Fe SMA strips significantly increased the deformation capacity of the concrete, even under lower confining pressures, compared to those specimensconfined with CFRP sheets. The experimental results were used to develop finite-element models of RC columns confined with Fe SMA or CFRP in their plastic-hinge region. After validating the proposed analytical model through comparison with the results from a previous RC column test, a series of lateral cyclic load analyses were carried out for the RC columns confined with Fe SMA and CFRP. The analytical results revealed that the lateral cyclic behavior of the Fe SMA-confined column was greatly enhanced in terms of deformation and energy dissipation capacities compared with tothat of the as-built and CFRP-confined columns.

Preparation of $\beta$-Cyclodextrinized Cellulosic Fiber and Deodouring Property ($\beta$-시클로덱스트린화 셀룰로오스 섬유의 제조 및 소취성)

  • Choi, Chang-Nam;Hwang, Tae-Yeon;Ko, Bong-Kook;Kim, Ryong;Hong, Sung-Hak;Kim, Sang-Yool
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.635-641
    • /
    • 2001
  • $\beta$-Cyclodextrine/benzoic acid complex was prepared and reacted with cyanuric chloride (2,4,6-trichloro-1,3,5-triazine). Identification of complex formation and reaction was checked by FT-IR, UV-Vis, and EDX. By reacting this material with cotton fiber, the deodourant fiber was prepared. The deodourizing property was evaluated by the concentration changes of aqueous ammonia solution after flowing ammonia gas through the column titled with deodourant fiber prepared. The deodourizing property was increased with an increase of concentration of $\beta$-cyclodextrine unit in the fiber. In the case of $\beta$-cyclodextrine/benzoic acid complex, the deodourzing property was much increased, comparing with the $\beta$-cyclodextrine only. It was considered to be the binding of aamonia gas caused by benzoic acid in the complex.

  • PDF

A Study on Finite Element Methods for HSS(Hollow Square Section) Steel Columns Strengthened with Carbon Fiber Reinforced Polymer Plastic(CFRP) Sheets (탄소섬유쉬트(CFRP Sheets)로 보강된 각형강관(HSS)기둥의 유한요소해석 연구)

  • Park, Jai Woo;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.185-194
    • /
    • 2016
  • This paper presents the finite element method results for HSS(Hollow Square Section) steel columns strengthened with Carbon Fiber Reinforced Polymer Plastic(CFRP) sheets. 6 specimens were fabricated and the specimen groups were non-compact short columns, slender short columns, and non-compact long columns. Test parameter was the number of CFRP ply. The finite element analysis was performed by using ANSYS Workbench V.14.0 and the results of FEM were compared with those of Test for failure mode, load-displacement curve, maximum load, and initial stiffness. The comparisons between experimental observations and computed results show that the analyses provided good correlation to actual behavior. Finally, the buckling stress were calculated according to the AISC cold-formed structure provision and the retrofitting effect were verified for each section type.