DOI QR코드

DOI QR Code

Effect of load eccentricity on buckling behavior of FRP composite columns with open and closed cross sections

  • M, Kasiviswanathan (Department of Civil Engineering, Sona College of Technology) ;
  • M, Anbarasu (Department of Civil Engineering, Government College of Engineering)
  • Received : 2022.09.20
  • Accepted : 2022.12.27
  • Published : 2023.01.25

Abstract

Fiber reinforced polymer (FRP) columns are increasingly being used in various engineering fields due to its high strength to weight ratio and corrosion resistance. Being a thin-walled structure, their designs are often governed by buckling.Buckling strength depends on state of stress of elements which is greatly influence by stacking sequence and various inaccuracies such as geometric imperfections and imperfections due to eccentricity of compressive load and non-uniform boundary conditions. In the present work, influence of load eccentricity on buckling strength of FRP column has been investigated by conducting parametric study. Numerical analyses were carried out by using finite element software ABAQUS. The finite element (FE) model was validated using experimental results from the literature, which demonstrated good agreement in terms of failure loads and deformed shapes.The influence of load eccentricity on buckling behavior is discussed with the help of developed graphs.

Keywords

References

  1. ABAQUS (2011), Standard User's Manual, Hibbit, Karlsson and Sorensen, Inc, USA.
  2. Aktas, M. and Balcioglu, H.E. (2014), "Buckling behavior of pultruded composite beams with circular cutouts", Steel Compos. Struct., 17(4), 359. https://doi.org/10.12989/scs.2014.17.4.359.
  3. Arani, A.G., Maghamikia, S., Mohammadimehr, M. and Arefmanesh, A. (2011), "Buckling analysis of laminated composite rectangular plates reinforced by SWCNTS using analytical and finite element methods", J. Mech. Sci. Technol., 25(3), 809-820. https://doi.org/10.1007/s12206-011-0127-3
  4. Ascione, F. (2014), "Influence of initial geometric imperfections in the lateral buckling problem of thin walled pultruded GFRP I-profiles", Compos. Struct., 112, 85-99. https://doi.org/10.1016/j.compstruct.2014.02.002
  5. Barbero, E.J. (1998), "Prediction of compression strength of unidirectional polymer matrix composites", J. Compos. Mater., 32(5), 483-502. https://doi.org/10.1177/002199839803200504
  6. Barbero, E.J. (2000), "Prediction of buckling-mode interaction in composite columns", Mech. Compos. Mater. Struct., 7(3), 269-284. https://doi.org/10.1080/10759410050031130
  7. Boscato, G., Casalegno, C., Russo, S., and Mottram, J.T. (2014), "Buckling of built-up columns of pultruded fiber-reinforced polymer C-sections", J. Compos. Construct., 18(4). https://doi.org/10.1061/(asce)cc.1943-5614.0000453
  8. Bradford, M.A. and Ronagh, H.R. (1997), "Elastic distortional buckling of tapered composite beams", Struct. Eng. Mech., 5(3), 269. https://doi.org/10.12989/sem.1997.5.3.269
  9. Cardoso, D.C.T., Harries, K.A. and Batista, E. (2014), "Compressive strength equation for GFRP square tube columns", Compos. Part B Eng., 59, 1-11. https://doi.org/10.1016/j.compositesb.2013.10.057
  10. Carlsson, L.A., Adams, D.F. and Pipes, R.B. (2014), Experimental Characterization of Advanced Composite Materials, CRC Press, Taylor & Franciss Group.
  11. Debski, H., Rozylo, P. and Gliszczynski, A. (2018), "Effect of low-velocity impact damage location on the stability and post-critical state of composite columns under compression", Compos. Struct., 184, 883-893. https://doi.org/10.1016/j.compstruct.2017.09.089
  12. Debski, H., Rozylo, P. and Teter, A. (2020), "Buckling and limit states of thin-walled composite columns under eccentric load", Thin Walled Struct., 149, 106627. https://doi.org/10.1016/j.tws.2020.106627
  13. Hashem, Z.A., and Yuan, R.L. (2001), "Short vs. long column behavior of pultruded glass-fiber reinforced polymer composites", Constr. Build. Mater., 15(8), 369-378. https://doi.org/10.1016/s0950-0618(01)00018-6.
  14. Kasiviswanathan, M. and Anbarasu, M. (2022), "Numerical Study and design rule for axial capacities of pultruded GFRP hollow columns", Struct., 39, 253-265. https://doi.org/10.1016/j.istruc.2022.03.039
  15. Kasiviswanathan, M. and Anbarasu M. (2021), "Simplified approach to estimate the lateral torsional buckling of GFRP channel beams", Struct. Eng. Mech., 77(4), 523-533. https://doi.org/10.12989/sem.2021.77.4.523
  16. Kasiviswanathan, M. and Upadhyay, A. (2021a), "Global buckling behavior of Blade stiffened compression flange of FRP box-beams", Struct., 32, 1081-1091. https://doi.org/10.1016/j.istruc.2021.03.085
  17. Kasiviswanathan, M. and Upadhyay, A. (2021b), "Web buckling behavior of FRP box-beams: Governing parameters and their effect", Adv. Comput. Des., 6(1), 55-75 https://doi.org/10.12989/acd.2021.6.1.55
  18. Kollar, L.P. (2003), "Local buckling of fiber reinforced plastic composite structural members with open and closed cross sections", J. Struct. Eng., 129(11), 1503-1513. https://doi.org/10.1061/(asce)0733-9445(2003)129:11(1503)
  19. Kolakowski, Z. and Mania, R.J. (2013), "Semi-analytical method versus the FEM for analysis of the local post-buckling of thin-walled composite structures", Compos. Struct., 97, 99-106. https://doi.org/10.1016/j.compstruct.2012.10.035
  20. Kulkarni, V. and Jaiswal;Gangadhar Ramtekkar, M. (2020), "Numerical and analytical study on axial compression behaviour of pultruded GFRP members", Adv. Mater. Lett., 11(9), 1-5. https://doi.org/10.5185/amlett.2020.091553
  21. Li, Z.M. and Qiao, P. (2015), "Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression", Eng. Struct., 85, 277-292. https://doi.org/10.1016/j.engstruct.2014.12.028
  22. Nunes, F., Correia, M., Correia, J. R., Silvestre, N. and Moreira, A. (2013), "Experimental and numerical study on the structural behavior of eccentrically loaded GFRP columns", Thin Walled Struct., 72, 175-187. https://doi.org/10.1016/j.tws.2013.07.002
  23. Puente, I., Insausti, A. and Azkune, M. (2006), "Buckling of GFRP columns: An empirical approach to design", J. Compos. Constr., 10(6), 529-537. https://doi.org/10.1061/(asce)1090-0268(2006)10:6(529)
  24. Qiao, P. and Zou, G. (2003), "Local buckling of composite fiber-reinforced plastic wide-flange sections", J. Struct. Eng., 129(1), 125-129. https://doi.org/10.1061/(asce)0733-9445(2003)129:1(125)
  25. Tsai, S.W. and Hahn, H.T. (1980), "Introduction to composite materials", Technomic.
  26. Tsai, S.W. and Wu, E.M. (1972), "A general theory of strength for anisotropic materials", J. Compos. Mater., 5(1), 58-80. https://doi.org/10.21236/ada306350
  27. Topal, U. (2017), "Buckling load optimization of laminated composite stepped columns", Struct. Eng. Mech., 62(1), 107-111. https://doi.org/10.12989/sem.2017.62.1.107
  28. Urbaniak, M., Teter, A. and Kubiak, T. (2015), "Influence of boundary conditions on the critical and failure load in the GFPR channel cross-section columns subjected to compression", Compos. Struct., 134, 199-208. https://doi.org/10.1016/j.compstruct.2015.08.076
  29. Van Pham, P., Mohareb, M. and Fam, A. (2018), "Lateral torsional buckling of steel beams strengthened with GFRP plate", Thin Wall. Struct., 131, 55-75. https://doi.org/10.1016/j.tws.2018.06.025
  30. Vanevenhoven, L.M., Shield, C.K. and Bank, L.C. (2010), "LRFD factors for pultruded wide-flange columns", J. Struct. Eng., 136(5), 554-564. https://doi.org/10.1061/(asce)st.1943-541x.0000126
  31. Wysmulski, P. and Debski, H. (2017), "The effect of eccentricity of load on the behavior of compressed composite columns in critical state", Poly. Compos., 40(1), 70-77. https://doi.org/10.1002/pc.24601
  32. Zhan, Y. and Wu, G. (2018), "Determination of critical loads for global buckling of axially loaded pultruded fiber-reinforced polymer members with doubly symmetric cross sections", Adv. Struct. Eng., 21(12), 1911-1922. https://doi.org/10.1177/1369433218759572
  33. Zhan, Y. and Wu, G. (2019), "Prediction of global buckling loads of doubly symmetric pultruded FRP columns subjected to concentric compression", J. Appl. Math. Mech., 99(6), e201700277. https://doi.org/10.1002/zamm.201700277
  34. Zienkiewicz, O.C. and Taylor, R.L. (2006), The finite element method, Butterworth-heinemann.
  35. Zureick, A. and Scott, D. (1997), "Short-term behavior and design of fiber-reinforced polymeric slender members under axial compression", J. Compos. Constr., 1(4), 140-149. https://doi.org/10.1061/(asce)1090-0268(1997)1:4(140)