• 제목/요약/키워드: polymer cement ratio

검색결과 197건 처리시간 0.026초

폴리머 시멘트 모르타르를 이용한 철근콘크리트 흄관 라이닝에 관한 연구 (A Study on the Lining of Reinforced Concrete Pipe Using Polymer-Modified Mortar)

  • 김영집;김한엽;조영구;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.333-338
    • /
    • 2000
  • At present, reinforced concrete pipe has been widely used as drain pipe. However, many reinforced concrete pipe is exposed at deteriorated environment by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar on the development in durability of reinforced concrete pipe. Polymer-modified mortars ate prepared with various polymer typer as cement modifier and polymer-cement ratio and rested for compressive and flexural strengths, adhesion in tension, acid resistance test, freezing and thawing test, and lining test of product in the field. From the rest results, it is apparent that polymer-modified mortars have good mechanical properties and durability as lining material. In practice, all polymers can be used as lining materials for reinforced concrete pip, and type of polymer, and polymer-cement ratio and curing conditions are controlled for good lining product.

  • PDF

재유화형 폴리머 분말수지 혼입 폴리머-시멘트 모르타르의 건조수축 및 강도특성 (Drying Shrinkage and Strength Properties of Polymer-Modified Mortars Using Redispersible Polymer Powder)

  • 연규석;주명기;정중호;김성기;이지원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.533-536
    • /
    • 2005
  • Drying shrinkage and strength of the redispersible SBR and PAE powder-modified mortars were experimentally investigated. Results of the study that the drying shrinkage rapidly increased until 7 days of age and it was then saturated to the value of about $1\~2\times10^{4}$ after 14 days. It turned out that the polymer-cement ratio exerted more influence on the drying shrinkage than the content of powder shrinkage-reducing agent did. Flexural (compressive) strength of the mortar increased (decreased) as the polymer-cement ratio increased and it was 7$\~$11 (23$\~$39) MPa at 7 days of age. The average (maximum) increasing (decreasing) rate turned out to be about 10 (30) $\%$. As in the drying shrinkage case, the polymer-cement ratio exerted more influence on both flexural and compressive strengths than the content of powder shrinkage agent did.

  • PDF

폴리머 시멘트 슬러리 도장철근의 인발부착 특성 (Pullout Bond Characteristics of Polymer Cement Slurry Coated Rebars)

  • 김현기;김민호;장성주;김완기;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.117-122
    • /
    • 2001
  • Recently, epoxy-coated re-bar used to the structure partly and put to practical use step, but not economical and appeared to the defect of deterioration of long term bond strength between concrete. The method for complement the defect of epoxy coated re-bar, study of polymer cement slurry coated re-bar started and basic properties appeared to excellent, but study of bond properties embedded in concrete specimens insufficient until now. This study attempts to examination of using possibility for bond strength of polymer cement slurry coated re-bar between concrete specimens compare to ACI Code and KS Code through pull-out test of 15cm$\times$15cm$\times$15cm specimens with polymer cement slurry coated re-bar as polymer cement ratio 50%, 100%, 150%, coating thickness 250${\mu}{\textrm}{m}$, 440${\mu}{\textrm}{m}$ and curing age. In the results of this study, the bond strength of polymer cement slurry coated re-bar compare to plain re-bar, epoxy coated re-bar decreased St/BA-modified polymer cement slurry coated re-bar, but bond strength of PA-modified polymer cement slurry coated re-bar appeared to excellent results. The bond properties of polymer cement slurry coated re-bar between concrete will be obtain more precise results according to compressive strength change of concrete and re-bar diameter size.

  • PDF

고온시에서의 폴리머 시멘트 모르타르의 연소특성에 관한 연구 (Burn-up Characteristics of Polymer-Modified Cement Mortar Used for Building Repair)

  • 김형준;노구치 타카후미
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.295-298
    • /
    • 2012
  • Repair and strengthening is necessary to extend the service life of existing buildings. Polymer-modified cement mortar (PCM) has been extensively used as a high performance material particularly for finishing and repairing works in concrete building because of itsexcellent adhesion, waterproofing, resistance to chemical attack, and workability. As PCM contains organic polymer, it is necessary to clarify its properties at high temperature under fire, on which sufficient data are not available. This paper evaluated the burn-up characteristics of polymer-modified cement mortar with cone calorimeter test, non-combustibility test and flammability test with experimental parameters such as the types of polymer, unit-polymer content, polymer-cement ratio and thickness of the specimen.

  • PDF

폴리머 디스퍼전과 시멘트로 만든 균열보수용 폴리머 시멘트 복합체의 기초적 성질 (Basic Properties of Polymer Cement Composites with Polymer Dispersions and Cement for Crack Repair )

  • 조영국
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권5호
    • /
    • pp.97-104
    • /
    • 2023
  • 본 연구는 RC 구조물의 균열보수를 위한 보수재로서 폴리머 디스퍼전과 시멘트만으로 구성된 폴리머 시멘트 복합체 (polymer cement Composites ; PCCs)를 제작하여 실험적으로 기초물성을 파악하고자 하였다. 연구를 위한 시험배합은 EVA 및 SAE 폴리머 디스퍼전을 기반으로 보수재의 충전성을 고려하여 폴리머 시멘트비를 4가지(20, 60, 80 및 100%)로 변환시키면서 물시멘트비를 정해 PCCs의 점도를 결정하였다. 또한 PCCs의 강성을 개선시키기 위하여 P/C 80%와 100%에 실리카퓸을 혼입한 시험편도 제작하였다. PCCs의 균열보수용으로서의 점도, 유동성, 충전성, 인장강도, 신장률 및 탄성계수 등 기초적 물성을 실험하였다. 연구결과, 폴리머의 종류에 따라 P/C는 점도와 유동성에 큰 영향을 미쳤으며 RC 구조물의 균열보수용으로서 충전성을 고려한 적절한 점도를 맞춘 배합설계를 위해 상당한 가수가 필요하였다. 본 연구에서 설계한 모든 배합은 충전성이 우수하였으며, PCCs의 인장강도와 신장률은 시멘트 혼입 폴리머계 방수재에 대한 KS 규정을 만족하였다. 또한 실리카퓸을 혼입함으로써 PCCs의 인장강도와 탄성계수가 개선되었으며, 폴리머 종류에 따라서는 SAE를 사용한 경우가 EVA를 사용한 경우에 비해 RC 구조물 균열 보수재로서 우수한 기초적인 물성을 나타냈다. 본 연구결과를 종합하면, RC 구조물의 균열보수용으로 SAE를 사용한 P/C 80% 또는 100%와 실리카퓸 30%까지 혼입한 배합을 적절한 배합으로 제안할 수 있었다.

경량 폴리머 콘크리트 복합체의 내열성능에 관한 연구 (A Study on the Heat Resistance of Light-Weight Polymer Concrete Composites)

  • 조영국
    • 한국건축시공학회지
    • /
    • 제8권6호
    • /
    • pp.131-137
    • /
    • 2008
  • In recent years, the light-weight aggregate has widely been used to reduce the weight of construction structures, and to achieve the thermal insulation of building structures. The purpose of this study is to evaluate the heat resistance of polymer concrete composites with light-weight aggregate made by binders as resin and cement with polymer dispersion. The light-weight polymer concrete composites are prepared with various conditions such as binder content, filler content, void-filling ratio, light-weight aggregate content and polymer-cement ratio, and tested for heat resistant test, and measured the weight reducing ratio, strengths and exhaustion content of gas such as CO, NO and $SO_2$. From the test results, the weight reducing ratio of light weight polymer concrete using UP binder after heat resistance test increase with an increase in the UP content irrespective of the filler content. The weight reducing ratio of polymer cement concrete is considerably smaller than that of UP concrete. In general, the strengths after heat resistance of polymer concrete composites are reduced about 40 to 65% compared with those before test. The exhausted quantity of CO, NO and $SO_2$ gases in polymer concrete composites is less than EPS(Expanded poly styrene). From the this study, it is confirmed that the many types gases discharge according to binder type of polymer concrete composites, its amount is controlled by selection of the binder type and mix proportions.

철근보강 폴리마 콘크리트보의 변형특성 (Deformation Characteristics of Reinforced Polymer Concrete Beams)

  • 연규석
    • 한국농공학회지
    • /
    • 제30권1호
    • /
    • pp.63-72
    • /
    • 1988
  • The primary objective of the study was to find the deformation characteristics of reinforced polymer concrete beams. A test program was carried out to compare the behavior in deformation of polyester and MMA concrete beams with cement concrete beams but with varying ratios of tensile reinforcement. From the results the following conclusions can be made. 1.The various strengths of polymer concrete ware very high compared to the strengths for cement concrete. Also, compared to conventional concrete beams, flexural strength of reinforced polymer concrete beams was distinctly higher for the same section and steel ratios. 2.The polymer concrete beams exhibit large deflections accompanied by relatively high strengths as compared to cement concrete beams. 3.The average ultimate strain at the extreme compression fiber of polymer concrete beams was 0.01 1 cm / cm, and this value was about three to four times as large as that of cement concrete beams, 4.The polymer concrete beams developed more cracks which were more wide crack distribution spacing than the cement concrete beams, and the beams failed in a more ductile manner. 5.The reinforcing steel ratio has a significant effect on the beam strength, load-deflection response, stress-strain curve, and crack pattern of polymer concrete beams.

  • PDF

폴리머-시멘트 모르타르의 미세구조 동결융합 저항성의 관계 (The Relationship between Microstructure and Freezing Thawing Resistance of Polymer-Cement Mortars)

  • 황의환;황택성
    • 한국세라믹학회지
    • /
    • 제31권9호
    • /
    • pp.949-956
    • /
    • 1994
  • In order to investigate the relationship between pore size distribution and freezing-thawing resistance of mortars, polymer-cement mortars were prepared by using styrene-butadiene rubber latex, ethylene-vinyl acetate emulsion and polyacrylic ester emulsion with various polymer-cement ratios at constant flow. From the results of the test, polymer-cement mortars had a good pore size distribution for freezing-thawing resistance compared with unmodified mortars because of having a small pore volume in the pore radius range of 103~104 $\AA$ affecting on the frost damage. And the freezing-thawing resistance of polymer-cement mortars was improved with increasing polymer-cement ratio.

  • PDF

폐석 미분말을 혼입한 폴리머 시멘트 콘크리트의 내약품성에 관한 연구 (A Study for Chemical Resistance of Polymer Cement Concrete Using Tailing)

  • 전철수;연규석;이윤수;이필호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.355-360
    • /
    • 1999
  • Polymer cement is made by the modifying ordinary cement concrete with polymer additive. Until now polymer cement concrete is not used for the structural member, but it is growing to be considered as developing uses such as a waterproof of roof slab, the structural member for protecting corrosion, and a road pavement. The plymer cement concrete, being used for those uses, is superior to the cement concrete against the inorganic, organic acid, salt of acetic acid and organic solvents generally. In this paper, the polymer cement concrete was made by the ratio of 1:1 of sands and tailing in fine aggregate in order to solve the environmental pollution which causes the social problem by the tailing, It was measured for the compressive strength, flexural strength, and chemicals resistance was tested by dealing with 10% HCI, 20% NaOH and 10% NaCl aqueous solution.

  • PDF

폴리머 디스퍼션을 이용한 프리팩트 콘크리트용 주입 모르타르의 배합에 관한 연구 (Mix Design of Polymer Grouting Mortar for Prepacked Concrete Using Polymer Dispersions)

  • 조영국;김완기
    • 한국건축시공학회지
    • /
    • 제8권5호
    • /
    • pp.85-91
    • /
    • 2008
  • Prepacked concrete has recently been used in the special constructions fields such as underwater concrete work, heavy-weight concrete work, underground structure work, partial repair works for damaged reinforced concrete structures. and polymer-modified mortars have been employed as grouting mortars for the prepacked concrete. The purpose of this study is to recommend the optimum mix design of polymer-modified grouting mortars for prepacked concrete. Polymer-modified mortars using SBR and EVA emulsions as admixture of grouting mortars for prepacked concrete are prepared with various mix proportions such as sand-binder ratio, fly ash replacement ratio, polymer-binder ratio. and tested for flowability, viscosity of grouting mortars, bleeding ratio, expansion ratio, flexural and compressive strengths of grouting mortars and compressive and tensile strengths of prepacked concretes. From the test results, it is apparent that polymer-modified mortars can be produced as grouting mortars when proper mix design is chosen. We can design the mix proportions of high strength mortars for prepacked concrete according to the control of mix design factors such as type of polymer, polymer-binder ratio, sand-binder ratio and fly ash replacement ratio. Water-binder ratio of plain mortars for a constant flowability value are in the ranges of 43% to 50%. SBR-modified mortar has a little water-binder ratios compared to those of plain mortar, however, EVA-modified mortar needs a high water-binder ratio due to a high viscosity of polymer dispersion. The expansion and bleeding ratios of grouting mortars are also controlled in the proper value ranges. Polymer-modified grouting mortars have good flexural. compressive and tensile strengths, are not affected with various properties with increasing fly ash replacement to cement and binder-sand ratio. In this study, SBR-modified grouting mortar with a polymer-binder ratio of 10% or less, a fly ash replacement of 10% to cement and a sand-binder ratio of 1.5 is recommended as a grouting mortar for prepacked concrete.