• Title/Summary/Keyword: polymer battery

Search Result 328, Processing Time 0.031 seconds

The Next Generation Large Capacity Battery Fuel Cells Technology and their Prospects

  • Kim, Gwang-Beom;Bang, Jin-Woo;You, Chung-Yeol;Soh, Dea-Hwa;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.611-612
    • /
    • 2005
  • Fuel cells is proved that potential energy is greater than the existing power generation. In this paper, we describe a principle of fuel cell which is used for next generation portable battery and brief characteristic of direct methanol fuel cells (DMFCs) that used for portable appliances by miniaturization of polymer electrolyte fuel cell. Lastly we describe about research investment for fuel cells.

  • PDF

Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries (고성능 리튬 이온전지를 위한 폴리머-세라믹 복합 겔 고분자 전해질)

  • Jang, So-Hyun;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.4
    • /
    • pp.123-128
    • /
    • 2016
  • In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-based gel polymer electrolyte incorporating nano-size $Al_2O_3$ ceramic particle was prepared by electrospinning. The gel polymer electrolyte (GPE) incorporated with $Al_2O_3$ ceramic particle showed higher ionic conductivity of $9.5{\times}10^{-2}Scm^{-1}$ than pure PVdF-HFP GPE without ceramic particle and improved the electrochemical stability up to 5.2 V. The GPEs were assembled with $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (NMC) cathode for electrochemical test. The GPE batteries at 0.1 C-rate delivered $168.2mAh\;g^{-1}$ for pure GPE and $189.6mAh\;g^{-1}$ for hybrid GPE, respectively. Therefore, the incorporation of high dielectric constant ceramic particle will be good strategy to enhance the stability and electrochemical properties of lithium ion gel polymer batteries.

Polymer/Inorganic Nanohybrid Membrane on Lithium Metal Electrode: Effective Control of Surficial Growth of Lithium Layer and Its Improved Electrochemical Performance (리튬 금속 전극상 고분자/무기물 나노복합막 형성: 리튬층의 효과적 표면성장 제어 및 전기화학적 특성 향상)

  • Jeong, Yohan;Seok, Dohyeong;Lee, Sanghyun;Shin, Weon Ho;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • Polymer/inorganic composites were used as a protective layer of lihitum metal electrode for effective suppression of lithium dendrite. PVDF-HFP was used as an polymer material and TiO2 nanoparticle was used as an inorganic material. PVDF-HFP is a highly flexible polymer that acts as a matrix of inorganic materials while TiO2 nanoparticle improves the mechanical strength and ion conductivity of the protective layer. The as-synthesized protective hybrid membrane exhibited good dispersion of TiO2 in the PVDF-HFP matrix by SEM, AFM and XRD analyses. Furthermore, the electrochemical analysis showed that the polymer-inorganic composite retained high coulombic efficiency of 80% and low overpotential, less than 20 mV until the 100th cycles due to the improved mechanical properties and ion conductivity in comparison to the control sample (untreated and PVDF-HFP polymers/Cu).

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.

A Study of Shelf Life about Li-ion Battery (리튬 2차 전지의 저장 수명에 관한 연구)

  • Kim, Dong-seong;Jin, Hong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.339-345
    • /
    • 2020
  • In the field of defense, one-shot devices such as missiles are stored for a long period of time after they are manufactured, so it is essential to predict their storage life. A study was conducted to find the shelf life of a Li-ion battery used in one-shot devices. To do this, a Li-ion battery that has been used in weapon systems for more than 5 years was secured. A non-functional test was performed on the battery to check for external changes or failures. After the non-functional test, a discharge test was performed to measure the performance after storing it. Through the test, the performance was checked, including the initial charging voltage, discharge time, and battery temperature, and the trend of the change was identified. An F-test, One-way ANOVA, and regression analysis were performed to verify the aging, and the shelf life of the battery was estimated by an approximation formula that was derived through a regression analysis. As a result of the ANOVA, the p-value was less than the reference value of 0.05, and the performance of the battery decreased by more than 15% after a certain period of time. This change is assumed to result from the change in physical properties of the lithium polymer cell.

Electrical Characterization of Organo Sulfur Compound-Polyphenylenediamine Positive Electrode in Lithium Battery (유기황화합물-Polyphenylenediamine리튬전지용 정극의 전기적특성)

  • 박수길;박종은;손원근;김상욱;임기조;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.261-264
    • /
    • 1997
  • Polyphenylenediamine(PPD)film was prepared with organo sulfur compond (2-aminothiophenol, 1,2-ethanedithiol, and 2-aminoethaneethiol etc.) adding lithium salt to increase the electrical conductivity of the polymer surface. The molecular structure of conductive polymer synthesized were examined and discussed by using SEM, FT-IR, NMR etc. The elecrical conductivity messurement were carried out with four-probe method at dry box of He and $N_2$atmosphere. The typical value of successful electrical conductivity was 1.2$\times$10$^1$S/cm at room temperature.

  • PDF

Synthesis of $LiNi_{1-x}Co_xO_2$(x=0.1~0.3) by the polymer-precursor method and charge-discharge characteristics of the Lithium secondary battery (고분자 물질을 gelling agent로 사용하여 합성한 $LiNi_{1-x}Co_xO_2$ (x=0.1~0.3) 분말의 물리화학적 성질 및 Li-이차전지에서의 전기화학적 특성에 관한 연구)

  • 권호진;박용철;조재필;김근배;임홍섭;박동곤
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1998.05a
    • /
    • pp.109-109
    • /
    • 1998
  • PDF

State-of-Charge Observation of Lithium Polymer Battery using SPKF (SPKF를 이용한 리튬 폴리머 배터리(LiPB)의 충전 상태(SOC) 관측)

  • Seo, Bo-Hwan;Lee, Dong-Choon;Lee, Kyo-Beum;Kim, Jang-Mok
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.228-229
    • /
    • 2011
  • 본 논문은 SPKF(Sigma-point Kalman Filter)를 이용한 리튬 폴리머 배터리(LiPB)의 충전 상태(SOC: State of Charge) 추정 방법을 제안한다. 배터리 모델은 단순화된 테브난 등가회로 모델과 Runtime 모델이 결합되어 있고, Runtime 모델의 양단 전압을 이용하여 SOC를 추정한다. 제안된 알고리즘은 시뮬레이션을 통해 그 타당성이 검증된다.

  • PDF

Development of measurement equipment for hybrid propulsion system of bimodal tram (바이모달 트램의 직렬형 하이브리드 추진시스템 계측장비 개발)

  • Bae, Chang-Han;Chang, Se-Ky;Mok, Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.241-248
    • /
    • 2010
  • A bimodal low-floor tram can provide the punctuality of trains and the flexibility of bus together to the passengers. Its propulsion system is a series hybrid type using a set of CNG engine generator and Li-polymer battery. This paper presents a development of the measurement equipment for fine-tuning of a series hybrid propulsion system of bimodal low-floor tram. Its configuration schemes are described and certified using the measurement data of bimodal low-floor tram.

  • PDF

Application of Advanced Manufacturing Technologies to Polymer Lithium Ion (PLI) Bi Cell Production Electrode Preparation / Assembly / Lamination

  • Singleton Robert W.;Nelson Craig R.
    • 한국전기화학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.83-91
    • /
    • 1999
  • Technical advances in manufacturing techniques and applied technologies have been made for bi cell manufacture, and are currently being implemented in the areas of discrete electrode / bi cell assembly, and electrode / separator lamination. Not only have improvements been noted in the reliability of the mechanical assembly and the increase in yields and decrease in costs, battery electrical performance has also been enhanced thru these assembly techniques. Evidence has been shown that the lamination techniques can influence porosity and electrolyte dispersion, and therefore electrical performance and long term reliability of the cells.

  • PDF