DOI QR코드

DOI QR Code

Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries

고성능 리튬 이온전지를 위한 폴리머-세라믹 복합 겔 고분자 전해질

  • Jang, So-Hyun (Department of Solar & Energy Engineering, Cheongju University) ;
  • Kim, Jae-Kwang (Department of Solar & Energy Engineering, Cheongju University)
  • 장소현 (청주대학교 태양광에너지공학과) ;
  • 김재광 (청주대학교 태양광에너지공학과)
  • Received : 2016.07.21
  • Accepted : 2016.09.07
  • Published : 2016.11.30

Abstract

In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-based gel polymer electrolyte incorporating nano-size $Al_2O_3$ ceramic particle was prepared by electrospinning. The gel polymer electrolyte (GPE) incorporated with $Al_2O_3$ ceramic particle showed higher ionic conductivity of $9.5{\times}10^{-2}Scm^{-1}$ than pure PVdF-HFP GPE without ceramic particle and improved the electrochemical stability up to 5.2 V. The GPEs were assembled with $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (NMC) cathode for electrochemical test. The GPE batteries at 0.1 C-rate delivered $168.2mAh\;g^{-1}$ for pure GPE and $189.6mAh\;g^{-1}$ for hybrid GPE, respectively. Therefore, the incorporation of high dielectric constant ceramic particle will be good strategy to enhance the stability and electrochemical properties of lithium ion gel polymer batteries.

본 연구에서는 poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)를 나노 크기의 $Al_2O_3$ 세라믹입자와 혼합하여 전기방사법으로 복합 겔 고분자 전해질을 제조하였다. $Al_2O_3$ 세라믹입자를 혼합한 복합 겔 고분자 전해질의 이온전도도는 $9.5{\times}10^{-2}Scm^{-1}$로, 순수한 PVdF-HFP 겔 고분자 전해질보다 높은 이온전도도를 나타내며 전기화학적 안정성도 5.2 V까지 개선하였다. 전기화학적 성능을 분석하기 위해서 $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (NMC)양극과 함께 전지로 제작되었으며 순수 겔 고분자 전해질과 복합 겔 고분자 전해질 셀은 0.1C-rate에서 각각 $168.2mAh\;g^{-1}$$189.6mAh\;g^{-1}$의 방전 용량을 가지며 우수한 수명 특성을 보여 주었다. 따라서 고유전율 세라믹 입자의 복합화는 리튬 이온 겔 고분자 전지의 안정성과 전기화학적 특성을 향상시키는 좋은 대안이 될 것으로 판단된다.

Keywords

References

  1. J. Kim, T. Artur V., T. Yim, and J. Mun, 'The influence of impurities in room temperature ionic liquid electrolyte for lithium ion batteries containing high potential cathode' J. the Korean Electrochem. Soc., 18, 51 (2015). https://doi.org/10.5229/JKES.2015.18.2.51
  2. J. Kalhoff, G.G. Eshetu, D. Bresser, and S. Passerini, 'Safer electrolytes for lithium-ion batteries: State of the art and perspectives' ChemSusChem, 8, 2154 (2015). https://doi.org/10.1002/cssc.201500284
  3. H.S. Kim, S.I. Moon, and S.P. Kim, 'A Study on the characteristics of lithium-ion polymer battery with composition of crosslink-type gel polymer electrolyte' J. the Korean Electrochem. Soc., 7, 189 (2004). https://doi.org/10.5229/JKES.2004.7.4.189
  4. K.K. Jung, J.U. Kim, J.H. Ahn, K.W. Kim, and H.J. Ahn, 'Electrochemical characteristics of microporous polymer electrolytes based on poly(vinylidene-co-hexafluoropropylene)' J. the Korean Electrochem. Soc., 7, 183 (2004). https://doi.org/10.5229/JKES.2004.7.4.183
  5. A.M. Stephan, 'Review on gel polymer electrolytes for lithium batteries' European Polymer J., 42, 21 (2006). https://doi.org/10.1016/j.eurpolymj.2005.09.017
  6. J.R. Kim, S.W. Choi, S.M. Jo, W.S. Lee, and B.C. Kim, 'Characterization and properties of P(VdF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning' J. Electrochem. Soc., 152, A295 (2005). https://doi.org/10.1149/1.1839531
  7. X. Li, G. Cheruvally, J.K. Kim, J.W. Choi, J.H. Ahn, K.W. Kim, and H.J. Ahn, 'Polymer electrolytes based on an electrospun poly(vinylidene fluoride-co-hexafluoro propylene) membrane for lithium batteries' J. Power Sources, 167, 491 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.032
  8. S.W. Lee, S.W. Choi, S.M. Jo, B.D. Chin, D.Y. Kim, and K.Y. Lee, 'Electrochemical properties and cycle performance of electrospun poly(vinylidene fluoride)-based fibrous membrane electrolytes for Li-ion polymer battery' J. Power Sources, 163, 41 (2006). https://doi.org/10.1016/j.jpowsour.2005.11.102
  9. J.K. Kim, J. Scheers, T.J. Park, and Y. Kim, 'Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries' ChemSusChem, 8, 636 (2015). https://doi.org/10.1002/cssc.201402969
  10. Ch. Ma, J. Zhang, M. Xu, Q. Xia, J. Liu, S.i Zhao, L. Chen, A. Pan, D.G. Ivey, and W. Wei, 'Cross-linked branching nanohybrid polymer electrolyte with monodispersed $TiO_2$ nanoparticles for high performance lithium-ion batteries' J. Power Sources, 317, 103 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.097
  11. J.K. Kim, G. Cheruvally, X. Li, J.H. Ahn, K.W. Kim, and H.J. Ahn, 'Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries' J. Power Sources, 178, 815 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.063
  12. Y.J. Lim, H.W. Kim, S. S. Lee, H.J. Kim, J.K. Kim, Y.G. Jung, and Y. Kim, 'Ceramic-based composite solid electrolyte for lithium-ion batteries' ChemPlusChem, 80, 1100 (2015). https://doi.org/10.1002/cplu.201500106
  13. D.W. Kang, and J.K. Kim, 'Characterization of fibrous gel polymer electrolyte for lithium polymer batteries with enhanced electrochemical properties' J. Electroanalytical Chemistry, 775, 37 (2016). https://doi.org/10.1016/j.jelechem.2016.05.029