• 제목/요약/키워드: polyhydroxyalkanoate depolymerase

검색결과 9건 처리시간 0.024초

Molecular Characterization of Extracellular Medium-chain-length Poly(3-hydroxyalkanoate) Depolymerase Genes from Pseudomonas alcaligenes Strains

  • Kim Do Young;Kim Hyun Chul;Kim Sun Young;Rhee Young Ha
    • Journal of Microbiology
    • /
    • 제43권3호
    • /
    • pp.285-294
    • /
    • 2005
  • A bacterial strain M4-7 capable of degrading various polyesters, such as poly$(\varepsilon-caprolactone)$, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxyoctanoate), and poly(3-hydroxy-5-phenylvalerate), was isolated from a marine environment and identified as Pseudomonas alcaligenes. The relative molecular mass of a purified extracellular medium-chain-length poly(3-hydroxyalkanoate) (MCL-PHA) depolymerase $(PhaZ_{palM4-7})$ from P. alcaligenes M4-7 was 28.0 kDa, as determined by SDS-PAGE. The $PhaZ_{palM4-7}$ was most active in 50 mM glycine-NaOH buffer (pH 9.0) at $35^{\circ}C$. It was insensitive to dithiothreitol, sodium azide, and iodoacetamide, but susceptible to p-hydroxymercuribenzoic acid, N-bromosuccinimide, acetic anhydride, EDTA, diisopropyl fluorophosphate, phenylmethylsulfonyl fluoride, Tween 80, and Triton X-100. In this study, the genes encoding MCL-PHA depolymerase were cloned, sequenced, and characterized from a soil bacterium, P. alcaligenes LB19 (Kim et al., 2002, Biomacro-molecules 3, 291-296) as well as P. alcaligenes M4-7. The structural gene $(phaZ_{palLB19})$ of MCL-PHA depolymerase of P. alcaligenes LB19 consisted of an 837 bp open reading frame (ORF) encoding a protein of 278 amino acids with a deduced $M_r$ of 30,188 Da. However, the MCL-PHA depolymerase gene $(phaZ_{palM4-7})$ of P. alcaligenes M4-7 was composed of an 834 bp ORF encoding a protein of 277 amino acids with a deduced Mr of 30,323 Da. Amino acid sequence analyses showed that, in the two different polypeptides, a substrate-binding domain and a catalytic domain are located in the N-terminus and in the C-terminus, respectively. The $PhaZ_{palLB19}$ and the $PhaZ_{palM4-7}$ commonly share the lipase box, GISSG, in their catalytic domains, and utilize $^{111}Asn$ and $^{110}Ser$ residues, respectively, as oxyanions that play an important role in transition-state stabilization of hydrolytic reactions.

Isolation of an Aromatic Polyhydroxyalkanoates-degrading Bacterium

  • JU, HE-SUG;JUNGHO KIM;HOON KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권5호
    • /
    • pp.540-542
    • /
    • 1998
  • Five microorganisms capable of degrading an aromatic medium-chain-length polyhydroxyalkanoate ($PHA_{MCL}$), poly(3-hydroxy-5-phenylvalerate) (PHPV), were isolated from wastewater-treatment sludge. Among the isolates, JS02 showed degrading activity consistantly during several transfers. The isolate JS02 could hydrolyze another aromatic MCL copolyester, poly(3-hydroxy-5-phenoxyvalerate-co-3-hydroxy-7-phenoxyheptanoate), [P(5POHV-co-7POHH)], and other short-chain-length PHAs ($PHA_{SCL}) such as poly(3-hydroxybutyrate) [P3(HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3 HB-co-4 HB)], and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with relatively low activity. The culture supernatant of JS02 showed hydrolyzing activity for the p-nitrophenyl esters of fatty acids.

  • PDF

Polyhydroxyalkanoate Chip for the Specific Immobilization of Recombinant Proteins and Its Applications in Immunodiagnostics

  • Park, Tae-Jung;Park, Jong-Pil;Lee, Seok-Jae;Hong, Hyo-Jeong;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권2호
    • /
    • pp.173-177
    • /
    • 2006
  • In this study, a novel strategy was developed for the highly selective immobilization of proteins, using the polyhydroxyalkanoate (PHA) depolymerase substrate binding domain (SBD) as an active binding domain. In order to determine the appropriacy of this method for immunodiagnostic assays, the single-chain antibody (ScFv) against the hepatitis B virus (HBV) preS2 surface protein and the severe acute respiratory syndrome coronavirus (SARS-CoV) envelope protein (SCVe) were fused to the SBD, then directly immobilized on PH A-coated slides via microspotting. The fluorescence-labeled HBV antigen and the antibody against SCVe were then utilized to examine specific interactions on the PHA-coated surfaces. Fluorescence signals were detected only at the spotted positions, thereby indicating a high degree of affinity and selectivity for their corresponding antigens/antibodies. Furthermore, we detected small amounts of ScFv-SBD (2.7 ng/mL) and SCVe-SBD fusion proteins (0.6ng/mL). Therefore, this microarray platform technology, using PHA and SBD, appears generally appropriate for immunodiagnosis, with no special requirements with regard to synthetic or chemical modification of the biomolecules or the solid surface.

Biosynthesis, Modification, and Biodegradation of Bacterial Medium-Chain-Length Polyhydroxyalkanoates

  • Kim, Do-Young;Kim, Hyung-Woo;Chung, Moon-Gyu;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • 제45권2호
    • /
    • pp.87-97
    • /
    • 2007
  • Medium-chain-length polyhydroxyalkanoates (MCL-PHAs), which have constituents with a typical chain length of $C_{6}-C_{14}$, are polyesters that are synthesized and accumulated in a wide variety of Gram-negative bacteria, mainly pseudomonads. These biopolyesters are promising materials for various applications because they have useful mechanical properties and are biodegradable and biocompatible. The versatile metabolic capacity of some Pseudomonas spp. enables them to synthesize MCL-PHAs that contain various functional substituents; these MCL-PHAs are of great interest because these functional groups can improve the physical properties of the polymers, allowing the creation of tailor-made products. Moreover, some functional substituents can be modified by chemical reactions to obtain more useful groups that can extend the potential applications of MCL-PHAs as environmentally friendly polymers and functional biomaterials for use in biomedical fields. Although MCL-PHAs are water-insoluble, hydrophobic polymers, they can be degraded by microorganisms that produce extracellular MCL-PHA depolymerase. MCL-PHA-degraders are relatively uncommon in natural environments and, to date, only a limited number of MCL-PHA depolymerases have been investigated at the molecular level. All known MCL-PHA depolymerases share a highly significant similarity in amino acid sequences, as well as several enzymatic characteristics. This paper reviews recent advances in our knowledge of MCL-PHAs, with particular emphasis on the findings by our research group.

Molecular Structure of PCR Cloned PHA Synthase Genes of Pseudomonas putida KT2440 and Its Utilization for Medium-Chain Length Polyhydroxyalkanoate Production

  • Kim, Tae-Kwon;Shin, Hyun-Dong;Seo, Min-Cheol;Lee, Jin-Nam;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권2호
    • /
    • pp.182-190
    • /
    • 2003
  • A new phaC gene cluster encoding polyhydroxyalkanoate (PHA) synthase I PHA depolymerase, and PHA synthase II was cloned using the touchdown PCR method, from medium-chain length (mcl-) PHA-producing strain Pseudomonas putida KT2440. The molecular structure of the cloned phaCl gene was analyzed, and the phylogenic relationship was compared with other phaCl genes cloned from Pseudomonas species. The cloned phaCl gene was expressed in a recombinant E. coli to the similar level of PHA synthase in the parent strain P. putida KT2440, but no significant amount of mcl-PHA was accumulated. The isolated phaCl gene was re-introduced into the parent strain P. putida KT2440 to amplify the PHA synthase I activity, and the recombinant P. purida accumulated mcl-PHA more effectively, increasing from 26.6 to $43.5\%$. The monomer compositions of 3-hydroxylalkanoates in mcl-PHA were also modified significantly in the recombinant P. putida enforcing the cloned phaCl gene.

Pseudomonas sp. RY-1에 의한 Medium-chain-length Polyhydroxyalkanoates의 생분해 (Biodegradation of Medium-chain-length Polyhydroxyalkanoates by Pseudomonas sp. RY-1)

  • 류강은;김영백;양영기;이영하
    • 미생물학회지
    • /
    • 제36권2호
    • /
    • pp.84-90
    • /
    • 2000
  • Psudomonas sp. RY-1이 생성하는 extracellular depolymerase system을 이용하여 단위체의 결가지에 서로 다른 탄소 길이와 불포와기를 함유하는 medium-chain-length polyhdroxyalkanoates (MCL-PHAs)의 생분해도를 시럼실 조건에서 조사하였다. 생분애도는 평파내지에서의 clear zone 형성, 효소 처리에 의한 고분자 현탁액의 탁도 감소 및 호흡량의 경시적 변화로 측정하였다. Pseudomonas sp. RY-1은 MCL-PHA depolymerase의 생성을 통하여 조사된 모든 종류의 MCl-PHAs를 분해할 수 있었으나, 이 효소의 생성은 쉽게 이용될수 있는 이차기질에 의해 저해받는 것으로 나타났다. MCl-PHAs의 분해율이 단위체의 탄소수가 홀수개로 구성된 고분자에 비하여 보다 높았다. 곁가지에 분포화기를 함유한 MCl-PHAs는 불포화기를 갖지 아니하는 고분자에 비하여 분해가 빠르게 이루어졌으며, 이들의 분해는 고분자의 결정화도와 밀접한 관련이 있는 것으로 나타났다.

  • PDF

Enzymatic and Non-enzymatic Degradation of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolyesters Produced by Alcaligenes sp. MT-16

  • Choi Gang Guk;Kim Hyung Woo;Rhee Young Ha
    • Journal of Microbiology
    • /
    • 제42권4호
    • /
    • pp.346-352
    • /
    • 2004
  • Poly(3-Hydroxybutyrate-co­3-Hydroxyvalerate), poly(3HB-co-3HV), copolyesters with a variety of 3HV contents (ranging from 17 to $60\;mol\%$) were produced by Alcaligenes sp. MT-16 grown on a medium containing glucose and levulinic acid in various ratios, and the effects of hydrophilicity and crystallinity on the degradability of the copolyesters were evaluated. Measurements of thermo-mechanical pro­perties and Fourier-transform infrared spectroscopy in the attenuated total reflectance revealed that the hydrophilicity and crystallinity of poly(3HB-co-3HV) copolyesters decreased as 3HV content in the copolyester increased. When the prepared copolyester film samples were non-enzymatically hydrolysed in 0.01 N NaOH solution, the weights of all samples were found to have undergone no changes over a period of 20 weeks. In contrast, the copolyester film samples were degraded by the action of extra­cellular polyhydroxybutyrate depolymerase from Emericellopsis minima W2. The overall rate of weight loss was higher in the films containing higher amounts of 3HV, suggesting that the enzymatic degra­dation of the copolyester is more dependent on the crystallinity of the copolyester than on its hydro­philicity. Our results suggest that the degradability characteristics of poly(3HB-co-3HV) copolyesters, as well as their thermo-mechanical properties, are greatly influenced by the 3HV content in the copoly­esters.

Complete Genome Sequence of Massilia sp. KACC 81254BP Reveals a Potential for Degrading Polyhydroxyalkanoates

  • Sihyun An;Gyeongjun Cho;Jae-Hyung Ahn;Hang-Yeon Weon;Dayeon Kim;Young-Joon Ko;Jehyeong Yeon;Joon-hui Chung;Han Suk Choi;Jun Heo
    • 한국미생물·생명공학회지
    • /
    • 제52권1호
    • /
    • pp.102-104
    • /
    • 2024
  • 제주도 매립지에서 분리된 Massilia strain KACC 81254BP는 생분해성플라스틱 폴리하이드록시알카노에이트(PHA)를 분해할 수 있다. 이 균주의 유전체는 5,028,452 bp의 원형 염색체로 구성되어 있으며, G+C 함량은 64.6%이다. 이 유전체는 PHB depolymerase를 포함한 4,513개 유전자가 확인되었다. 이 유전체는 신호전달과 아미노산 수송 등 대사와 관련한 다양한 유전자를 포함하고 있다. 이 연구는 Massilia sp. KACC 81254BP의 폴리에스터 플라스틱 분해 효소와 관련된 유전학적 정보를 제공한다.