Polyhydroxyalkanoate Chip for the Specific Immobilization of Recombinant Proteins and Its Applications in Immunodiagnostics

  • Park, Tae-Jung (Department of Chemical and Biomolecular Engineering, Bioprocess Engineering Research Center, Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology) ;
  • Park, Jong-Pil (Department of Chemical and Biomolecular Engineering, Bioprocess Engineering Research Center, Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology) ;
  • Lee, Seok-Jae (Department of Chemical and Biomolecular Engineering, Bioprocess Engineering Research Center, Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology) ;
  • Hong, Hyo-Jeong (The Antibody Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering, Bioprocess Engineering Research Center, Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology)
  • Published : 2006.04.30

Abstract

In this study, a novel strategy was developed for the highly selective immobilization of proteins, using the polyhydroxyalkanoate (PHA) depolymerase substrate binding domain (SBD) as an active binding domain. In order to determine the appropriacy of this method for immunodiagnostic assays, the single-chain antibody (ScFv) against the hepatitis B virus (HBV) preS2 surface protein and the severe acute respiratory syndrome coronavirus (SARS-CoV) envelope protein (SCVe) were fused to the SBD, then directly immobilized on PH A-coated slides via microspotting. The fluorescence-labeled HBV antigen and the antibody against SCVe were then utilized to examine specific interactions on the PHA-coated surfaces. Fluorescence signals were detected only at the spotted positions, thereby indicating a high degree of affinity and selectivity for their corresponding antigens/antibodies. Furthermore, we detected small amounts of ScFv-SBD (2.7 ng/mL) and SCVe-SBD fusion proteins (0.6ng/mL). Therefore, this microarray platform technology, using PHA and SBD, appears generally appropriate for immunodiagnosis, with no special requirements with regard to synthetic or chemical modification of the biomolecules or the solid surface.

Keywords

References

  1. Herbert, C. B., T. L. Mclernon, C. L. Hypolite, D. N. Adams, L. Pikus, C. C. Huang, G. B. Fields, P. C. Letourneau, M. D. Distefano, and W. S. Hu (1997) Micropatterning gradients and controlling surface densities of photoactivatable biomolecules on self-assembled monolayers of oligo(ethylene glycol) alkanethiolates. Chem. Biol. 4: 731-737 https://doi.org/10.1016/S1074-5521(97)90311-2
  2. Wilson, D. S. and S. Nock (2002). Functional protein microarrays. Curr. Opin. Chem. Biol. 6: 81-85 https://doi.org/10.1016/S1367-5931(01)00281-2
  3. Wilson, D. S. and S. Nock (2003) Recent developments in protein microarray technology. 42: 494-500 https://doi.org/10.1002/anie.200390150
  4. Zhu, H. and M. Snyder (2003) Protein chip technology. Curr. Opin. Chem. Biol. 7: 55-63 https://doi.org/10.1016/S1367-5931(02)00005-4
  5. Cha, T., A. Guo, Y. Jun, D. Pei, and X. Y. Zhu (2004) Immobilization of oriented protein molecules on poly(ethylene glycol)-coated Si(111). 4: 1965-1976 https://doi.org/10.1002/pmic.200300747
  6. Lee, B. H. and T. Nagamune (2004) Protein microarrays and their applications. 9: 69-75 https://doi.org/10.1007/BF02932987
  7. Park, J. P., S. J. Lee, T. J. Park, K.-B. Lee, I. S. Choi, S. Y. Lee, M.-G. Kim, and B. H. Chung (2004) Microcontact printing of biotin for selective immobilization of streptavidin- fused proteins and SPR analysis. Biotechnol. Bioprocess Eng. 9: 137-142 https://doi.org/10.1007/BF02932997
  8. Yoo, S. M., K. C. Keum, S. Y. Yoo, J. Y. Choi, K. H. Chang, N. C. Yoo, W. M. Yoo, J. M. Kim, D. Lee, and S. Y. Lee (2004) Development of DNA microarray for pathogen detection. Biotechnol. Bioprocess Eng. 9: 93-99 https://doi.org/10.1007/BF02932990
  9. Aliyu, S. H., M. H. Aliyu, H. M. Salihu, S. Parmar, H. Jalal, and M. D. Curran (2004) Rapid detection and quantitation of hepatitis B virus DNA by real-time PCR using a new fluorescent (FRET) detection system. J. Clin. Virol. 30: 191-195 https://doi.org/10.1016/j.jcv.2003.11.005
  10. Tang, Y. W., H. Li, A. Roberto, D. Warner, and B. Yen- Lieberman (2004) Detection of hepatitis C virus by a userdeveloped reverse transcriptase-PCR and use of amplification products for subsequent genotyping. J. Clin. Virol. 31: 148-152 https://doi.org/10.1016/j.jcv.2004.02.010
  11. Wen, J. K., X. E. Zhang, Z. Cheng, H. Liu, Y. F. Zhou, Z. P. Zhang, J. H. Yang, and J. Y. Deng (2004) A visual DNA chip for simultaneous detection of hepatitis B virus, hepatitis C virus and human immunodeficiency virus type- 1. Biosens. Bioelectron. 19: 685-692 https://doi.org/10.1016/S0956-5663(03)00264-1
  12. Tan, Y. J., P. Y. Goh, B. C. Fielding, S. Shen, C. F. Chou, J. L. Fu, H. N. Leong, Y. S. Leo, E. E. Ooi, A. E. Ling, S. G. Lim, and W. Hong (2004) Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin. Diagn. Lab. Immunol. 11: 362-371 https://doi.org/10.1128/CDLI.11.2.362-371.2004
  13. Manopo, I., L. Lu, Q. He, L. L. Chee, S. W. Chan, and J. Kwang (2005) Evaluation of a safe and sensitive spike protein-based immunofluorescence assay for the detection of antibody responses to SARS-CoV. J. Immunol. Methods 296: 37-44 https://doi.org/10.1016/j.jim.2004.10.012
  14. MacBeath, G. and S. L. Schreiber (2000) Printing proteins as microarrays for high-throughput function determination. Science 289: 1760-1763
  15. Lee, S. J., J. P. Park, T. J. Park, S. Y. Lee, S. Lee, and J. K. Park (2005) Selective immobilization of fusion proteins on poly(hydroxyalkanoate) microbeads. Anal. Chem. 77: 5755- 5759 https://doi.org/10.1021/ac0505223
  16. Geller, B. L., J. D. Deere, D. A. Stein, A. D. Kroeker, H. M. Moulton, and P. L. Iversen (2003) Inhibition of gene expression in Escherichia coli by antisense phosphorodiamidate morpholino oligomers. Antimicrob. Agents Chemother. 47: 3233-3239 https://doi.org/10.1128/AAC.47.10.3233-3239.2003
  17. Sambrook, J. and D. Russell (2001) Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
  18. Park, S. S., C. J. Ryu, Y. J. Kang, S. V. Kashmiri, and H. J. Hong (2000) Generation and characterization of a novel tetravalent bispecific antibody that binds to hepatitis B virus surface antigens. Mol. Immunol. 37: 1123-1130 https://doi.org/10.1016/S0161-5890(01)00027-X
  19. Park, J. P., K.-B. Lee, S. J. Lee, T. J. Park, M. G. Kim, B. H. Chung, Z. W. Lee, I. S. Choi, and S. Y. Lee (2005) Micropatterning proteins on polyhydroxyalkanoate substrates by using the substrate binding domain as a fusion partner. Biotechnol. Bioeng. 92: 160-165 https://doi.org/10.1002/bit.20581
  20. Choi, J. I., S. Y. Lee, and K. Han (1998) Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of poly(3- hydroxybutyrate) in Escherichia coli. Appl. Environ. Microbiol. 64: 4897-4903
  21. Lee, K.-B., D. J. Kim, Z.-W. Lee, S. I. Woo, and I. S. Choi (2004) Pattern generation of biological ligands on a biodegradable poly(glycolic acid) film. Langmuir 20: 2031-2035
  22. Valanne, A., Huopalahti, S., Vainionpaa, R., Lovgren, T., Harma, H. (2005). Rapid and sensitive HBsAg immunoassay based on fluorescent nanoparticle labels and timeresolved detection. J. Virol. Methods 129: 83-90 https://doi.org/10.1016/j.jviromet.2005.05.012
  23. He, Q., I. Manopo, L. Lu, B. P. Leung, H. H. Chng, A. E. Ling, L. L. Chee, S. W. Chan, E. E. Ooi, Y. L. Sin, B. Ang, and J. Kwang (2005) Novel immunofluorescence assay using recombinant nucleocapsid-spike fusion protein as antigen to detect antibodies against severe acute respiratory syndrome coronavirus. Clin. Diagn. Lab. Immunol. 12: 321-328 https://doi.org/10.1128/CDLI.12.2.321-328.2005