• 제목/요약/키워드: polygonal discretization

검색결과 3건 처리시간 0.016초

Polygonal finite element modeling of crack propagation via automatic adaptive mesh refinement

  • Shahrezaei, M.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.685-699
    • /
    • 2020
  • Polygonal finite element provides a great flexibility in mesh generation of crack propagation problems where the topology of the domain changes significantly. However, the control of the discretization error in such problems is a main concern. In this paper, a polygonal-FEM is presented in modeling of crack propagation problems via an automatic adaptive mesh refinement procedure. The adaptive mesh refinement is accomplished based on the Zienkiewicz-Zhu error estimator in conjunction with a weighted SPR technique. Adaptive mesh refinement is employed in some steps for reduction of the discretization error and not for tracking the crack. In the steps that no adaptive mesh refinement is required, local modifications are applied on the mesh to prevent poor polygonal element shapes. Finally, several numerical examples are analyzed to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm in crack propagation problems.

Multi-material polygonal topology optimization for functionally graded isotropic and incompressible linear elastic structures

  • Thanh T. Banh;Joowon Kang;Soomi Shin;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.261-270
    • /
    • 2024
  • This paper proposes an effective method for optimizing the structure of functionally graded isotropic and incompressible linear elastic materials. The main emphasis is on utilizing a specialized polytopal composite finite element (PCE) technique capable of handling a broad range of materials, addressing common volumetric locking issues found in nearly incompressible substances. Additionally, it employs a continuum model for bi-directional functionally graded (BFG) material properties, amalgamating these aspects into a unified property function. This study thus provides an innovative approach that tackles diverse material challenges, accommodating various elemental shapes like triangles, quadrilaterals, and polygons across compressible and nearly incompressible material properties. The paper thoroughly details the mathematical formulations for optimizing the topology of BFG structures with various materials. Finally, it showcases the effectiveness and efficiency of the proposed method through numerous numerical examples.

초유한 보간법에 의한 p-version 유한요소해법 (Transfinite Interpolation Technique for P-Version of F.E.M.)

  • 우광성
    • 전산구조공학
    • /
    • 제5권1호
    • /
    • pp.75-82
    • /
    • 1992
  • h-version 유한요소에서 평활 곡선경계는 충분한 갯수의 직선경계에 의해 근사될 수 있다. 그러나, 일반적으로 곡선경계가 충분하지 않은 갯수의 직선변을 갖는 다각형요소, 또는 곡선요소등에 의한 사상이 정확하지 않을 경우 해가 수렴되지 않을 뿐만아니라 특히, 곡면에 수직방향의 응력은 다른 방향의 응력요소에 비해 수렴속도가 늦거나 틀린 해를 보여준다. 한편, p-version 유한요소는 사용되는 요소의 크기가 클 뿐아니라 변형되는 정도가 크므로 이러한 이산오차를 피하기 위해 초유한 보간기법에 제안되어 정확한 사상을 하게 된다. 본 연구에서는 직선경계는 물론 곡선경계에 초유한 사상을 h-version과 p-version에 적용하는 방법과 이에 필요한 초유한 보간자를 유도하여 세 문제의 예제를 통해 그 적용성과 우월성을 보이고자 한다.

  • PDF