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Transfinite Interpolation Technique for P-version of F.E.M.
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Abstract

In the h-version of F.E.M., all piecewisely smooth curved boundaries can be approximated by a suf-
ficient number of straight-sided elements. However, in the p-version the size of the element is usually
large and hence the probability of distortions is more. An attempt has been made to generate a curved
boundary by using a transfinite interpolation technique to avoid the discretization errors. In the follow-
ing sections, it will be shown how to construct transfinite interpolants both in h-version and in p-ver-
sion over polygonal and nonpolygonal regions. Three numericai {2sts are shown to validate the applica-

bility and superior capability of transfinite interpolation techniqué. “
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1. Introduction

The conventional finite element method
involves the partitioning of a polygonal domain
Q into rectangular and /or triangular elements.
Quite often, however, a structural engineer is
faced with a boundary value problem over a
nonpolygonal domain Q. The early approaches
in finite element modeling required that the
boundary, a9, of Q be approximated by a pol-
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ygonal arc. Obviously, the accuracy of the F.
E.M. is limited by the accuracy of the polyg-
onal approximation to 20. At worst, the con-
vergence of the F.E.M. may be destroyed if
boundary conditions are not handled properly.
The Babuska paradox!’ describes an error
asssociated with modeling a curved boundary
by straight-sided elements. Thus, if a mesh
with a regular polygon as its boundary serves
to model a circular region, a refinement of the
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Transfinite Interpolation Technique for p-version of F.E.M

mesh causes the polygon to have more sides
and to converge to a circle, We would then ex-
pect stresses to converge to values that are
exact for the circular region. In reality the
strains e, and stresses g, normal to the bound-
ary converge to wrong values, To avoid this
error, elements with curved edges should be
used. In order to better conform to curved
geometries and thus reduce discretization er-
ror, curved finite elements have been widely
applied in recent years., Krathammer,!’ Irons
and Zienkiewicz? have developed various
curved parametric finite elements which tend
to circumvent the above dilemmma in the case
of certain shapes of the curved boundary. For
mathematical convenience, in general, the
shape functions are defined on standard
domains(e.g. triangles, squares, cubes etc.)
and are mapped into real domain by suitable
coordinate trans-formations. The most com-
monly used mappings are linear and quadratic
parametric mappings does not introduce large
distortions in the h-version, and all piecewise
smooth boundaries can be approximated by a
sufficilent number of piecewisely quadratic
polynomials. In the p-version, however, the
size of the element is usually large and hence
the probability of distortions is more, es-
pecially if higher order parametric mapping is
used, unless the boundary of an element is
represented by a polynominal in the para-
metric form, In the case of nonpolygonal
boundaries, like circles and ellipses, parametric
mapping may not work at all.** In the case of
the proposed element, only the four corners of
an quadratic element will be referred to map-
ping from the standard to the real domain. It
is therefore necessary to find the mapping
function which will exactly map the standard

element to the sides of the real element in-

_76_.

cluding the four corner nodes by making use of
the exact geometric parameters of the curved
boundary.? In this study, an attempt has been
made to generate a curved boundary by using
a transfinite interpolation technique. This
technique has been discussed in detail by
Gordon and Hall.2% So, this paper represents
an approach to apply the transfinite interp-
olation technmque based on p-version of finite
element concepts to several structural pro-
blems. Also, the shape functions used in this
study are based on Integrals of Legendre

polynomials,
2. Transfinite Interpolation Technique

The term ‘transfinite’ is used to describe a
general class of interpolation schemes. Unlike
the classical methods of higher dimensional in-
terpolation which match the primitive function
f at a finite number of distinct points, these
methods match f at a non-denumerable(tran-
sfinite) number of points. Such a transfinite
interpolatory mapping of a domain such as the
unit square onto the domain of interest
introduces a natural curvilinear coordinate sys-
tem on Q. In other words, we refer to the class
of interpolation formula as being transfinite,
since their precision sets(i.e., the set of points
in the domain of the independent variables s, t
on which the interpolant matches the original
function) are non-denumerable, In particular,
the transfinite schemes®% to be considered are
of the type referred to as ‘blend-function met-
hods’. Let f be a continuous function of two in-
dependent variables with domain L: [0,h] x[0,
h] in the s-t plane as shown in Fig. 1. By a
projector P, we mean a linear operator from
the linear space T of all continuous bivariate
function f, with domain L, onto a subepace of
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Fig. 1 Domain L in the s-t plane

functions, For example, if the operator P is
defined by the formula :

P 1= —s/h) - (0,1} +(s/h) - flht) (1)

It can be expressed by the general form as
follows :

PLf1=3f(s, 1) - @ils) (2)
where 0=s5,(5;<---{s,,=~h and
O(s)=1 (s—5)/ LI‘(s:'—s;'), 0<i<m (3)
j¥i el

are the fundamental functions for Lagrange

polynomial interpolations. For completeness

and later reference, we display the analogous
formula for P, :

n
P,[f]=r;f(s, 1) - wilt) (4)
where 0=1,<,<---<t,=h and

4{;(1)=igi(1‘li) /ig/(t;—n). 0<j<n (5)

There is a way to compound the projectors P,

and P, by using Boolean sum,

0

P P=P+P—PP (6)
3. Transfinite Interpolants in P —version

The transfinite interpolants for curved
boundary can be achieved by constructing
blend mapping functions. First, each side of
the element with arbitrary boundaries is de-
fined by parametric equations in terms of stan-
dard coordinates shown in Fig.2. The tran-
sfinite interpolants for each side of the el-
ement are expressed in Eq. (7).

Side 1 {x=x¢a
=y,(&)
Side 2 {x'””
"}’2(’7) (7)
Side 3 {x x;(¢
)’"}’3(5
Side 4 {X_x“”
‘—)’4(77)
" )
X2 oSt |
689 7
b b D) \
H
4iny) . n
) 4(=1.1) (59803 3(1.1)
CAsE 1 side 4 side 2
3
1) 2ead 1(-1,~T)side 1 2(1.=1)
sl
4ogd) St
Toad b

Fig.2 Transfinite Interpolants From Standard Domain to
Real Domain in the plane
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The suitable transfinite interpolants of each
side have been derived for the plane domain,
It may be noted that for Case [, the edge
1—2 is circular with radius R, and the other

three edges are arbitrary. In Case I, the node
3 is the mudpoint of the circular arc 2—4, and
the edges 1—2 and 4—1 are straight. But, In
Case I, the edges 1—4 and 2—3 are circular
arcs with radius R; and R,, whereas, the edges
1—2 and 3—4 are straight. In Case 1, the
side 1,
which are function of &, is derived for demon-

suitable tranfinite interpolants for

stration.

xl(E):.‘:‘(H‘Rl (’OS(OIL%_E* + 02 'L—Ztg‘)

n(@=rotR, sin(0,15€ + 02%54 (8)

The rest of transfinite interpolants in Fig.2,
which are function of ¢ and #, for Case [ and
Case M can be derived like Eq.(7).

For Side 1(—1 <¢<1)
Case II, Case [l

x(&)=x, —1;—5+x2 _1;;_5,

n(@=p A58+, 1L (9)

For Side 2(—1 <y4<1)
Case 11

x()=x,+R cos(0, l%n—-f-(?:s %—'L)
yolm) =yy+R sin(0, 15040, 130
Case i
XQ(W):RE COS(02 1—;H‘+03 1—;_'1‘)
yoln)=R; sin(0, —1——;—']--*-03 1—;'7—) (10)
For Side 3(—1 <&<1)
Case [I
x3(&)=x;+R cos(9, 12j+04 %)

y3l&)=y,+R sin(0; %é-f-(h szi)

2 ’ 2

y3(&) =y, _1_52t§_ +ys 1—56‘ (11)

For Side 4(—~1 <x4<1)
Case_ Il
X4(']):-\'4 1‘+2‘ U +x 1; !

}'4(’1) =V4 ”1%1"}'."1 ‘1‘%‘1
Case Il

xy(n)=Ry cos(0, l%ﬂ--’r—(h —112-11—)

valn) =Ry sin(0, %’L+o4 bzi’L) (12)

The individual mapping functions are
blended with the opposite sides of the element
by means of projectors (n—1) /2, (&+1) /2, (y
-+1) /2, (¢—1) /2. In the process, the mapping
functions take the following form in Eq.(6) by

Boolean sum.

X=x(&)(1—n) /24x4(8) (1 +n) /2+x,{n)
(14€) /2+x,(n)(1—8) /2—x (1 =€) (1—n)
/4= x,(1+E)(1—n) /4—x3(1+8) (1+n) /4—.\"1

(1-8) 0+ /4 (13)

Y=y (&)(1—n) /2+y(&)(1+n) /24y, () (1+¢&)
/24y n)(1—8) /2—p,(1—&)(1—n) /4=y,
(1+8)(1—n) /4—x;(1+8)(1+n) /4—x,(1—¢)
(1+n) /4

4. Numerical Tests

4.1 Circular Plate

One quarter of a circular plate of radius, R,
subjected to a central concentrated load shown
in Fig.3, p=1.0 1b{or uniformly distributed
load gy=1.0 psi),is modeled with one p—version



a7z e A5 A 15(1992.3)

*34

j§ 3

Pay yay 1 2

4
a

1element

e ey

Fig-3 Centrally Loaded Circular Plate with Clamped and
Simply Supported Outer Edge.

element which maps the circular boundary by
transfinite interpolation technique as discussed
earlier. The problem data are R=2.0in, Poi-
sson’s ratio=0.3, thickness=0.0lin and

s modulus is 0.1092x 108 1b/ir. This problem
has been studied by using the heterosis,
Lagrange, and serendipity elements, but the
singularity gives rise to almost identical oscil-
latory patterns for Lagrange and serendipity
elements. However, the 48 —element mesh of
heterosis type proposed by Hughes was
emloyed to get the same degree of accuracy as
Timoshenko’s solution. On the other hand,
one-element p-version model shows excellent
agreement with Timoshenko’s as p-level is
increased up to 8. It may be noted that the
maximum deflection at the center of a circular
plate by p-version model is relatively greater
than Timoshenko’s value because the finite el-
ement used includes the effect of transverse
shear deformations. The results by p-version
of the finite element method are presented in
~Table 1.

Table 1. Max deflection at the center for clamped and S.S.
(simply supported) circular plate

P-Level | Wou(Uniform Load) | w,.,(Point Load)
P=6 0.23680 1.01902 0.06850 0.19558
P=7 0.24511 1.02410 0.07594 0.19939
P=8 0.24978 1.02572 0.07769 0.20151
P=9 0.25011 1.02806 0.07856 0.20264
P=10 0.25026 1.03997 0.07906 0.20542

Timoshenko| 0.25000 1.01923 0.07958 0.20200

4.2 Thick—Walled Cylinder

The thick-walled cylinder under a unit
internal pressure is shown in Fig.4. The ge-
ometry of the problem is the same as an
example of SAP9( verification manual. For the
pressure loading, the results obtained by
theoretical and SAP90 analyses with 45
ASOLID 9-node elements for the radial dis-
placement and stresses at the inner surface
are compared with the results by one element
p-version model with different p-levels in Figs.
5,6 and 7. In general, errors in normal stress g,
can be of the order of the tangential stress by
Babuska's paradox. However, it is shown that
one element p-version model can avoid this
discretization errors due to the curved bound-

ary from Fig.6 and 7.

4.3 Circular Hole In A Rectangular Panel

In this problem, the effects of extreme as-
pect ratios and non polynomial mapping have
been investigated. The stress concentration
factors at the neck for r/b (radius to half
width ratio) ranging 0.001 to 0.99 are
compared with the experimental solutions by
Nisida, Howland” etc. and numerical solutions
from NASTRAN 334 —element model and FI-
ESTA-2D% three element model. FIE-
STA—2D is a commercial code based on p-ver-
sion of the finite element method. A typical
h-version mesh of NASTRAN and the p-ver-

—-79-—
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- X
INNER RADIUS = 3.0
OUTER RADIUS = 9.0
MCODULUS OF ELASTICITY = 10.0 x 10°
POISSON'S RATIO = 0.3

Fig.4 Configuration and one element p-version model of

thick-walled cylinder

THICK-WALLED CYLINDER
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a
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3 i
S 9.4801 \E 5 7 a
T 0.468f ~—T-----=--< 5
2 0.456 THEORETICAL:0. 4582X10
0.454

1G e 30 1] 90 70 0
OEGREE OF E?EEEDM

Fig.5 Convergence of radial displacement

sion mesh are shown in Fig.8. Of interest is
the maximum stress, The maximum stress,
computed directly from the finite element sol-
ution using the three-element mesh with the
polynomial degree ranging from 1 to 8 and
r /b=0.2, is shown in Fig.9. It is seen that the

THICK-WALLED CYLINDER

-0.3
0.4
0.5}
W 0.8 o

£ —~e— P-VERSION : | ELEMENT
o ol \ 4 "7 SAPSO : 45 ASOLIG

& o 5 9-NODE ELEMENTS
g -o.or ) 6 7 8
m-'.o— —~__——_—-_—____-_______._.—_—.—‘.

it THEORETICAL : -1.0

-1.2¢

7 30

10 2 0 40 50 60
CEGREE OF FREECIM
Fig.6 Covergence of radial stress
THICK-WALLED CYLINDER
1.40} ]
@ 1.30f THEORETICAL : 1.25
E 1.a0f 8 7 8
n 5
1.10F
z 1.00h /4 —=— P-VERSION : 1 ELEMENT
'Z:Na u --~- SAPEO : 45 ASOLID
g P=3 9-NODE ELEMENTS
= 0.80F
.70
2.80 . . . . .
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Fig.7 Covergence of tangential stress

{11

———
=

f— 4b

1

Typical A version mesh
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Fig.8 Quarter model of a rectangular panel with a circular

hole
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Fig.9 Maximum stress at point A when r/ b=0.2

stress value is well within the 5 percent rela-

tive error range for p=4 to 8 compared with
Howland's experimental solution. The fact
that the p-version tolerates large aspect ratio
is illustrated in Fig.10. Using the same
three-element mesh as shown in Fig.8, the
stress concentration factors are computed for
a wide range of r /b ratios.

5. Conclusions

It has been established a class of transfinite
interpolation formula based on the use of blend
functions, It may be noted that in the case of
both triangular and quadrilateral elements, one
or more of the boundaries may be curved, in
which case mapping from standard elements
becomes more important. Moreover, the con-
cepts of exact mapping in the p-version can be
stressed on since large elements are used. The
p-version element based on transfinite interp-
olation technique with Integrals of Legendre
polynomials is found to avoid the discretization
errors due to the curved boundaries from three
numerical examples,
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Fig.10 Stress concentration factor as function of r/ b
rS5.end
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