• Title/Summary/Keyword: polyester composites

Search Result 150, Processing Time 0.028 seconds

Molecular Dynamics Study on Mechanical Behavior and Load Transfer of CNT/PET Nanocomposites : the Effects of Covalent Grafting (탄소나노튜브/폴리에스터 복합재의 역학적 거동과 하중전달에 관한 분자 동역학 전산모사 : 그래프팅 가공의 영향)

  • Jin, Juho;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.193-201
    • /
    • 2017
  • Molecular dynamics simulation and the Mori-Tanaka micromechanics study are performed to investigate the effect of the covalent grafting between CNT and polyester on the mechanical behavior and load transfer of nanocomposites. The transversely isotropic stress-strain curves are determined through the tension and shear simulations according to the covalent grafting. Also, isotropic properties of randomly dispersed nanocomposites are obtained by orientation averaging the transversely isotropic stiffness matrix. By addressing the grafting, the transverse Young's modulus and shear moduli of the nanocomposites are improved, while the longitudinal Young's modulus decreases due to the degradation of the grafted CNT.

Dielectric Characteristics of the Polymers Containing Nano-size Conductive Carbon Black Powders (전도성 나노 카본 블랙을 함유한 고분자 재료의 유전특성)

  • 진우석;이대길
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.68-77
    • /
    • 2004
  • The electromagnetic (EM) absorption or shielding characteristics of a material is an important issue not only for military purpose but also for commercial purposes such as radar, electric or telecommunication devices. In order to design the effective electromagnetic wave absorber, the electromagnetic characteristics of the constituents of the material should be available in target frequency band. Also, it must be possible to predict the electromagnetic properties of absorbers with respect to the content of lossy ingredients. In this study, the dielectric properties of unsaturated polyester resins containing nano-size conductive carbon black powder were measured with a free space method in the X-band frequency range and analyzed with respect to the content of carbon black. Finally, the method for estimating the dielectric properties of polymeric resin containing conductive carbon black with respect to the EM frequency was developed and verified.

Improved Mechanical and Durability Properties of PVC Sheet by Designing Three-Layered Structures

  • Park, Jun-Young;Kim, Woo-Sang;Kang, Hae-Cheon;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Juho;Lee, Eun-Kyoung;Kim, Namil
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.294-298
    • /
    • 2019
  • A three-layered PVC sheet consisting of polyvinyl chloride (PVC) and woven polyester fabric was prepared by extrusion and calendering. The flexibility and durability of the PVC were tuned by adding plasticizers, additives, and surface coatings. The tensile and tear strengths of the three-layered PVC sheet were higher than those of commercial two-layered sheet, while exhibiting low weight. The concentrations of the total volatile organic compounds (TVOCs) and formaldehyde (HCHO) emitted from the sheet were also lowered. The PVC sheet remained stable after prolonged exposure to UV light, signifying that the PVC sheet is suitable for cargo screen applications.

Analysis on Character and Ability of In -Plane Permeability of Geotextiles Used for Darainage (배수용 Geotextlle의 평면투수 성능분석)

  • 이상호
    • Geotechnical Engineering
    • /
    • v.8 no.3
    • /
    • pp.61-74
    • /
    • 1992
  • In order to provide fundamental data for the design of geotextile drains, the in-plane permeability coefficients were determined by tests and permeable cllaracteristics were investigated, mainly on domestic nonwoven and composite getextile products used for drainage purpose. The results obtained are as follows, The thickness, the in-plane permeability coefficient and the transmissivity with the in- crease of compressive stress are found to be remarkably decreased when the compressive stress is lass than about 10KN/m2. The inflane permeability of filament nonwovens are found to be lower than that of composites or staple-fiher nonwovens, and the compressibility of the geotextile shown to be larger for the polyester nonwovens than for the polypropylene nonwovens. The relation of compressive stress, q and compressibility, Cr is expressed as Cr=13.37 In q+23.28 and that of compressibility on the basis of 2KN /m2, Cr' and decrease ratio of in-plane permeability coefficient is followed Pr: 1.25Cr'

  • PDF

Dynamic Mechanical Properties of Natural Fiber/Polymer Biocomposites: The Effect of Fiber Treatment with Electron Beam

  • Han, Young-Hee;Han, Seong-Ok;Cho, Dong-Hwan;Kim, Hyung-Il
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.253-260
    • /
    • 2008
  • Environmentally friendly biocomposites were made using plant-based natural fibers, such as henequen and kenaf. The natural fiber reinforced polypropylene (PP) and unsaturated polyester (UP) biocomposites were examined in terms of the reinforcing effect of natural fibers on thermoplastic and thermosetting polymers. Kenaf (KE) and henequen (HQ) fibers were treated with an electron beam (EB) of 10 and 200 kGy doses, respectively, or with a 5 wt% NaOH solution. Four types of biocomposites (KE/PP, HQ/PP, KE/UP and HQ/UP) were fabricated by compression molding and each biocomposite was characterized by dynamic mechanical analysis and thermogravimetric analysis. The kenaf fiber had the larger reinforcing effect on the dynamic mechanical properties of both PP and UP biocomposites than the henequen fiber. The highest storage modulus was obtained from the biocomposite with the combination of UP matrix and 200 kGy EB treated kenaf fibers.

Fabrication of Al2O3/ZrO2Ceramics by the Polymerization Dispersion Process (ZrO2의 고분자화 분산법을 이용한 Al2O3/ZrO2요업체의 제조)

  • Cho, Myung-Je;Hwang, Kyu-Hong;Lee, Jong-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.284-288
    • /
    • 2004
  • To improve mechanical properties of $Al_2$O$_3$/ZrO$_2$composites have been controlled dispersion of ultra low size ZrO$_2$ particles in $Al_2$O$_3$ ceramics by polymeric precursor method (Pechini process). In case of coprecipitation or mechanical mixing of ZrO$_2$ powders with $Al_2$O$_3$, homogeneous dispersion and controlling the ZrO$_2$ size were relatively difficult due to high sintering temperature. So the polyesterization process of Zr/Y(NO$_3$)$_3$-citric acid solution in ethylene glycol with the commercial sub-micron sized o(-alumina powder (Sumitomo AES-11(0.4 ${\mu}{\textrm}{m}$)) was adopted in order to obtain homogeneous dispersion of ZrO$_2$ in A1203. By this partial polyesterization process, the homogeneous dispersion of relatively low sized ZrO$_2$in $Al_2$O$_3$/ZrO$_2$composites was achieved at 1450∼1$600^{\circ}C$ of sintering temperature range and their mechanical properties were measured.

Test Method Using VOC Analyzer to Measure VOC Emission of Paints for Wood-based Panel (VOC Analyzer를 이용한 목재용 도료의 휘발성유기화합물의 간이측정)

  • Eom, Young Geun;Kim, Ki-Wook;An, Jae-Yun;Kim, Hyun-Joong;Moon, Suck-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.65-72
    • /
    • 2007
  • The VOC (volatile organic compound) analyzer is devised to measure the four main aromatic hydrocarbon gases: toluene, ethylbenzene, xylene and styfene. It is not affected by ambient temperature and humidity. In addition, standby and measuring time of VOC Analyzer is a short as below 30 min and 8 min, respectively. Since the semiconductor gas sensor is supersensitive to gas components, it is not necessary to use a conventional gas concentrator or other complicated equipment. In this study, VOC emission behavior from 4 types paints (lacquer, urethane vanish, water-base paint, enamel paint) for wood-based panel was investigated using VOC Analyzer. After a specimen was spreaded on aluminum foil ($6.32{\times}6.32cm$) in $3{\ell}$ polyester bag, after 24 hours we could measure maximum VOC emission level that is a stabilized VOC value. Xylene of VOCs was high emitted from lacquer, urethane vanish and water-based paint, and TVOC (Toluene + Ethylbenzene + Xylene + Styrene) of lacquer was the highest emission concentration than another.

Durability of High Performance Polymer Concrete Composites (Focusing on Chemical Resistance and Hot Water Resistance) (고성능 폴리머 콘크리트 복합재료의 내구성(내약품성 및 내열성을 중심으로))

  • Hwang, Eui-Hwan;Kim, Yong-Yeon;Song, Min-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.360-368
    • /
    • 2017
  • In order to investigate the durability of high performance polymer concrete composites, polymer concrete specimens were prepared using the ortho-type unsaturated polyester resin (UPR) and iso-type UPR as a polymer binder and the calcium carbonate and silica fine powder as a filler. The durability of polymer concrete specimens was measured by hot water resistance, chemical resistance, pore analysis and SEM observation. The compressive strength of the specimen using the iso-type UPR was higher than that of using the ortho-type UPR, and the compressive strength of the specimen using the silica fine powder was higher than that of using the calcium carbonate filler. From hot water resistance results, it was found that the specimen using the iso-type UPR was superior to that of using the ortho-type UPR and the specimen using the calcium carbonate filler was superior to that of using the silica fine powder. The compressive strength reduction rate was measured after the chemical resistance test and the sodium hydroxide solution showed the highest reduction rate, followed by sulfuric acid, hydrochloric acid and calcium chloride solutions. When using the alkaline solution of sodium hydroxide, the weight reduction rate of the specimen using calcium carbonate was lower than that of using silica fine powder, while for the acidic solutions of sulfuric acid and hydrochloric acid, the weight reduction rate of the specimen using the silica fine powder was lower than that of using calcium carbonate.

Properties of Liquid Crystalline Polyester/Poly(ethylene 2,6-naphthalate) Blend Fibers (액정 폴리에스테르/PEN 블렌드 섬유의 성질)

  • Kim, Won;Kim, Young-Yong;Son, Jung-Sun;Yun, Doo-Soo;Han, Chul;Choi, Jae-Kon;Jo, Byung-Wook
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.244-257
    • /
    • 2002
  • A thermotropic liquid crystalline polymer(TLCP) which has flexible butylene/hexylene spacers in the main chain and a triad aromatic ester type mesogenic unit containing a naphthyl group was prepared by solution polycondensation. The in-situ composites based on poly(ethylene 2,6-naphthalate) (PEN) and a thermotropic liquid crystalline polymer(TLCP) were prepared and melt spun at different TLCP contents and different draw ratios to produce monofilaments. Blends of the TLCP with PEN were investigated in terms of thermal, mechanical properties and morphology. The TLCP synthesized showed nematic mesophasic behavior and its transition temperature to isotropic melt from mesophase was 249℃. The blends showed well dispersed TLCP phases in the PEN matrix without macroscopic phase separation. Inclusion of TLCP in the blends decreased the cold crystallization temperature of PEN in the blend, therefore, the TLCP acts as a nucleating agent in the blend and showed good interfacial adhesion between the dispersed LCP phases and PEN matrix with domain sizes 40~50 nm in diameter and well developed fibrillation in the monofilaments. The TLCP acted effectively as a reinforcing material in the PEN matrix at the 10wt% level, it led to an increase of initial modulus up to 270% and tensile strength by 235%, while the elongation rate increasing with higher draw ratios.

Recycling of Separate Glass Fiber from Waste Printed Circuit Boards Using Attrition Mill and DMF (어트리션 밀과 DMF 용매를 이용한 폐 인쇄회로기판에서 분리된 재생 유리섬유의 재활용)

  • Kim, Jong-Seok;Lee, Jae-Cheon;Jeong, Jin-Ki
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.894-899
    • /
    • 2012
  • In recent years, recycling process has come to be necessary for separating metals, glass fibers and polymer from WPCBs (waste printed circuit boards) due to an increasing amount of electronic device waste. In this study, dimethylformamide (DMF) and attrition mill reactor were used to separate the component such as metals, glass fiber and epoxy resin from WPCBs. Separation of glass fiber from WPCBs was carried out under stirring rates 300~600 revolution per minute (rpm) for 1~2 h as the various agitator. The recycled glass fibers (RGF) were analyzed by thermogravimetric analyzer (TGA) for degree of separation of epoxy resin in the WPCBs. The degree of separation of epoxy resin of WPCBs increased in attrition mill agitator as a mechanochemical process for recycling WPCBs. The RGF separated in the WPCBs was applied as a reinforcement in the RGF/unsaturated polyester composites to reuse as a reinforcement.