DOI QR코드

DOI QR Code

Durability of High Performance Polymer Concrete Composites (Focusing on Chemical Resistance and Hot Water Resistance)

고성능 폴리머 콘크리트 복합재료의 내구성(내약품성 및 내열성을 중심으로)

  • Hwang, Eui-Hwan (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Yong-Yeon (Department of Chemical Engineering, Kongju National University) ;
  • Song, Min-Kyu (Department of Chemical Engineering, Kongju National University)
  • Received : 2017.05.02
  • Accepted : 2017.05.16
  • Published : 2017.06.10

Abstract

In order to investigate the durability of high performance polymer concrete composites, polymer concrete specimens were prepared using the ortho-type unsaturated polyester resin (UPR) and iso-type UPR as a polymer binder and the calcium carbonate and silica fine powder as a filler. The durability of polymer concrete specimens was measured by hot water resistance, chemical resistance, pore analysis and SEM observation. The compressive strength of the specimen using the iso-type UPR was higher than that of using the ortho-type UPR, and the compressive strength of the specimen using the silica fine powder was higher than that of using the calcium carbonate filler. From hot water resistance results, it was found that the specimen using the iso-type UPR was superior to that of using the ortho-type UPR and the specimen using the calcium carbonate filler was superior to that of using the silica fine powder. The compressive strength reduction rate was measured after the chemical resistance test and the sodium hydroxide solution showed the highest reduction rate, followed by sulfuric acid, hydrochloric acid and calcium chloride solutions. When using the alkaline solution of sodium hydroxide, the weight reduction rate of the specimen using calcium carbonate was lower than that of using silica fine powder, while for the acidic solutions of sulfuric acid and hydrochloric acid, the weight reduction rate of the specimen using the silica fine powder was lower than that of using calcium carbonate.

고기능성 폴리머 콘크리트 복합재료의 내구성을 조사하기 위하여 올소타입 불포화폴리에스테르 수지와 이소타입 불포화폴리에스테르 수지를 폴리머 결합재로 사용하였고, 탄산칼슘과 실리카 미분말을 충전재로 사용하여 공시체를 제작하고 내열수성, 내약품성, 세공분석 및 SEM 조사를 실시하였다. 이소타입 불포화폴리에스테르 수지를 사용한 공시체의 압축강도가 올소타입 불포화폴리에스테스 수지를 사용한 공시체의 압축강도보다 높은 것으로 나타났고, 탄산칼슘 충전재에 비하여 실리카 미분말을 사용한 공시체의 압축강도가 높게 나타났다. 내열수성 시험에서 이소타입 불포화폴리에스테르 수지를 사용한 공시체가 올소타입 불포화폴리에스테르 수지를 사용한 공시체보다 내열수성이 우수한 것으로 나타났고, 탄산칼슘 충전재를 사용한 공시체가 실리카 미분말을 사용한 공시체보다 내열수성이 우수한 것으로 나타났다. 내약품성 시험 후에 측정한 압축강도 감소율은 수산화나트륨 수용액에 의한 압축강도 감소율이 가장 크게 나타났고 다음으로 황산, 염산 및 염화칼슘 순으로 나타났다. 알칼리성인 수산화나트륨 수용액에서는 탄산칼슘을 충전재로 사용한 공시체가 실리카 미분말을 사용한 공시체보다 중량 감소율이 적게 나타났으나 황산과 염산의 산성시약에서는 실리카 미분말을 사용한 공시체가 탄산칼슘을 사용한 공시체보다 중량 감소율이 적게 나타났다.

Keywords

References

  1. D. W. Fowler, Polymers in concrete: a vision for the 21st century, Cem. Concr. Compos., 21, 449-452 (1999). https://doi.org/10.1016/S0958-9465(99)00032-3
  2. Y. Ohama, Recent research and development trends of concrete-polymer composites in Japan, Proceedings of the 12th Congress on Polymers in Concrete, September 27-28, Chuncheon, Korea (2007).
  3. R. Griffiths and A. Ball, An assessment of the properties and degradation behaviour of glass-fibre-reinforced polyester polymer concrete, Compos. Sci. Technol., 60, 2747-2753 (2000). https://doi.org/10.1016/S0266-3538(00)00147-0
  4. M. Haidar, E. Ghorbel, and H. Toutanji, Optimization of the formulation of micro-polymer concretes, Constr. Build. Mater., 25, 1632-1644 (2011). https://doi.org/10.1016/j.conbuildmat.2010.10.010
  5. L. Czarnecki, A. Garbacz, and J. Kurach, On the characterization of polymer concrete fracture surface, Cem. Concr. Compos., 23, 399-409 (2001). https://doi.org/10.1016/S0958-9465(01)00009-9
  6. J. T. San-Jose, I. J. Vegas, and M. Frias, Mechanical expectations of a high performance concrete based on a polymer binder and reinforced with non-metallic rebars, Constr. Build. Mater., 22, 2031-2041 (2008). https://doi.org/10.1016/j.conbuildmat.2007.08.001
  7. E. H. Hwang, J. M. Kim, and J. H. Yeon, Characteristics of polyester polymer concrete using spherical aggregates from industrial by-products, J. Appl. Polym. Sci., 129, 2905-2912 (2013). https://doi.org/10.1002/app.39025
  8. J. M. L. Reis, Fracture assessment of polymer concrete in chemical degradation solutions, Constr. Build. Mater., 24, 1708-1712 (2010). https://doi.org/10.1016/j.conbuildmat.2010.02.020
  9. S. W. Son and J. H. Yeon, Mechanical properties of acrylic polymer concrete containing methacrylic acid as an additive, Constr. Build. Mater., 37, 669-679 (2012). https://doi.org/10.1016/j.conbuildmat.2012.07.093
  10. J. P. Gorninski, D. C. Dal Molin, and C. S. Kazmierczak, Strength degradation of polymer concrete in acidic environments, Cem. Concr. Compos., 29, 637-645 (2007). https://doi.org/10.1016/j.cemconcomp.2007.04.001
  11. J. P. Gorninski, D. C. Dal Molin, and C. S. Kazmierczak, Comparative assessment of isophtalic and orthophtalic polyester polymer concrete: Different costs, similar mechanical properties and durability, Constr. Build. Mater., 21, 546-555 (2007). https://doi.org/10.1016/j.conbuildmat.2005.09.003
  12. J. P. Gorninski, D. C. Dal Molin, and C. S. Kazmierczak, Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete, Cem. Concr. Res., 34, 2091-2095 (2004). https://doi.org/10.1016/j.cemconres.2004.03.012
  13. E. H. Hwang and J. M. Kim, Characteristics of concrete polymer composite using atomizing reduction steel slag (I) (Use of PMMA as a shrinkage reducing agent), Appl. Chem. Eng., 25, 181-187 (2014). https://doi.org/10.14478/ace.2014.1003
  14. E. H. Hwang and J. M. Kim, Characteristics of concrete polymer composite using atomizing reduction steel slag as an aggregate (II) (Use of polystyrene as a shrinkage reducing agent), Appl. Chem. Eng., 25, 380-385 (2014). https://doi.org/10.14478/ace.2014.1044
  15. E. H. Hwang and J. M. Kim, Characteristics of polyester polymer concrete using spherical aggregates from industrial by-products (II) (Use of fly ash and atomizing reduction steel slag), Korean Chem. Eng. Res., 53(3), 364-371 (2015). https://doi.org/10.9713/kcer.2015.53.3.364
  16. H. S. Kim, K. Y. Park, and D. G. Lee, A study on the epoxy resin concrete for the ultra-precision machine tool bed, J. Mater. Process. Technol., 48, 649-655 (1995). https://doi.org/10.1016/0924-0136(94)01705-6
  17. Sezan Orak, Investigation of vibration damping on polymer concrete with polyester resin, Cem. Conc. Res., 30, 171-174 (2000). https://doi.org/10.1016/S0008-8846(99)00225-2
  18. B. W. Jo, S. K. Park, and D. K. Kim, Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete, Const. Build. Mater., 22, 14-20 (2008). https://doi.org/10.1016/j.conbuildmat.2007.02.009