• Title/Summary/Keyword: polyelectrolyte/Ag nanocomposite

Search Result 2, Processing Time 0.02 seconds

Preparation of New Polyelectrolyte/ Silver Nanocomposites and Their Humidity-Sensitive Properties

  • Park, Min-Su;Lim, Tae-Ho;Jeon, Young-Min;Kim, Jong-Gyu;Gong, Myoung-Seon;Joo, Sang-Woo
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.308-313
    • /
    • 2008
  • A simple strategy was developed based on polyelectrolyte/silver nanocomposite to obtain humidity-sensitive membranes. The major component of a humid membrane is the polyTEAMPS/silver nanocomposite obtained by thermal heating the mixture of a polyelectrolyte and silver isopropylcarbamate complex. Humidity sensors prepared from polyTEAMPS/silver (w/w=100/0 and 100/6) nanocomposites had an average impedance of 292, 8.83 and $0.86\;k{\Omega}$, and 5,327, 140 and $0.93\;k{\Omega}$ at 30,60 and 95% relative humidity (RH), respectively. Hysteresis, temperature dependence and response time were also measured. Activation energies and complex impedance spectroscopy of the various components of the polyelectrolyte/silver nanocomposite films were examined for the humidity-sensing membrane.

Electrochemical Determination of Bisphenol A Concentrations using Nanocomposites Featuring Multi-walled Carbon Nanotube, Polyelectrolyte and Tyrosinase (다중벽 탄소 나노 튜브, 전도성고분자 및 티로시나아제 효소로 구성된 나노복합체를 이용한 비스페놀A 맞춤형의 전기화학적 검출법)

  • Ku, Nayeong;Byeon, Ayeong;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.684-689
    • /
    • 2021
  • In this paper, we develop a cost effective and disposable voltammetric sensing platform involving screen-printed carbon electrode (SPCE) modified with the nanocomposites composed of multi-walled carbon nanotubes, polyelectrolyte, and tyrosinase for bisphenol A. This is known as an endocrine disruptor which is also related to chronic diseases such as obesity, diabetes, cardiovascular and female reproductive diseases, precocious puberty, and infertility. A negatively charged oxidized multi-walled carbon nanotubes (MWCNTs) wrapped with a positively charged polyelectrolyte, e.g., polydiallyldimethylammonium, was first wrapped with a negatively charged tyrosinae layer via electrostatic interaction and assembled onto oxygen plasma treated SPCE. The nanocomposite modified SPCE was then immersed into different concentrations of bisphenol A for a given time where the tyrosinase reacted with OH group in the bisphenol A to produce the product, 4,4'-isopropylidenebis(1,2-benzoquinone). Cyclic and differential pulse voltammetries at the potential of -0.08 V vs. Ag/AgCl was employed and peak current changes responsible to the reduction of 4,4'-isopropylidenebis(1,2-benzoquinone) were measured which linearly increased with respect to the bisphenol A concentration. In addition, the SPCE based sensor showed excellent selectivity toward an interferent agent, bisphenol S, which has a very similar structure. Finally, the sensor was applied to the analysis of bisphenol A present in an environmental sample solution prepared in our laboratory.