Preparation of New Polyelectrolyte/ Silver Nanocomposites and Their Humidity-Sensitive Properties

  • Park, Min-Su (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Lim, Tae-Ho (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Jeon, Young-Min (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Kim, Jong-Gyu (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Gong, Myoung-Seon (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Joo, Sang-Woo (Department of Chemistry, Sungsil University)
  • Published : 2008.06.30

Abstract

A simple strategy was developed based on polyelectrolyte/silver nanocomposite to obtain humidity-sensitive membranes. The major component of a humid membrane is the polyTEAMPS/silver nanocomposite obtained by thermal heating the mixture of a polyelectrolyte and silver isopropylcarbamate complex. Humidity sensors prepared from polyTEAMPS/silver (w/w=100/0 and 100/6) nanocomposites had an average impedance of 292, 8.83 and $0.86\;k{\Omega}$, and 5,327, 140 and $0.93\;k{\Omega}$ at 30,60 and 95% relative humidity (RH), respectively. Hysteresis, temperature dependence and response time were also measured. Activation energies and complex impedance spectroscopy of the various components of the polyelectrolyte/silver nanocomposite films were examined for the humidity-sensing membrane.

Keywords

References

  1. N. Yamazoe and Y. Shimizu, Sens. Actuat., 10, 372 (1986)
  2. Y. Sakai, Y. Sadaoka, and M. Matsuguchi, Sens. Actuat. B, 35, 85 (1996) https://doi.org/10.1016/S0925-4005(96)02019-9
  3. Y. Sakai, M. Matsuguchi, Y. Sadaoka, and K. Hirayama, J. Electrochem. Soc., 140, 432 (1993) https://doi.org/10.1149/1.2221063
  4. Y. Sakai, M. Matsuguchi, and T. Hurukawa, Sens. Actuat. B, 66, 135 (2000) https://doi.org/10.1016/S0925-4005(00)00313-0
  5. C. W. Lee, H. W. Rhee, and M. S. Gong, Sens. Actuat. B, 73, 124 (2001) https://doi.org/10.1016/S0925-4005(00)00668-7
  6. H. W. Rhee, M. H. Lee, and M. S. Gong, Sens. Actuat. B, 73, 185 (2001) https://doi.org/10.1016/S0925-4005(00)00703-6
  7. C. W. Lee, S. W. Joo, B. K. Coi, and M. S. Gong, J. Mater. Sci., 37, 4615 (2002) https://doi.org/10.1023/A:1020604617228
  8. C. W. Lee, J. G. Kim, and M. S. Gong, Macromol. Res., 13, 265 (2005) https://doi.org/10.1007/BF03219062
  9. H. S. Park, C. W. Lee, and M. S. Gong, Macromol. Res., 12, 311 (2004) https://doi.org/10.1007/BF03218405
  10. H. S. Park, C. W. Lee, J. G. Kim, and M. S. Gong, Macromol. Res., 13, 96 (2005) https://doi.org/10.1007/BF03219021
  11. P. G. Su, I. C. Chen, and R. J. Wu, Anal. Chim. Acta., 103, 449 (2001)
  12. C. R. Mayer, V. Cabuil, T. Lalot, and R. Thouvenot, Angew. Chem. Int. Ed., 38, 3672 (1999) https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3672::AID-ANIE3672>3.0.CO;2-#
  13. A. N. Shipway and I. Willner, Chem. Commun., 2035 (2001)
  14. L. T. Chang and C. C. Yen, J. Appl. Polym. Sci., 55, 371 (1995) https://doi.org/10.1002/app.1995.070550219
  15. S. Shanmugam, B. Viswanathan, and T. K.Varadarajan, Mater. Chem. Phys., 95, 51 (2005)
  16. W. C. Lin and M.C. Yang, Macromol. Rapid Commun., 26, 1942 (2005) https://doi.org/10.1002/marc.200500597
  17. C. D. Feng, S. L. Sun, H. Wang, C. U. Segre, and J. R. Stetter, Sens. Actuat. B, 40, 217 (1997) https://doi.org/10.1016/S0925-4005(97)80265-1
  18. P. G. Su and W.Y. Tsai, Sens. Actuat. B, 100 407 (2004)
  19. J. Wang, B. Xu, J. Zhang, G. Liu, T. Zhang, F. Qiu, and M. Zhao, J. Mater. Sci. Lett., 18, 1603 (1999) https://doi.org/10.1023/A:1006676703641
  20. J. Wang, Q. Lin, T. Zhang, R. Zhou, and B. Xu, Sens. Actuat. B, 81, 248 (2002) https://doi.org/10.1016/S0925-4005(01)00959-5
  21. J. Wang, B. K. Xu, S. P. Ruan, and S. P. Wang, Mater. Chem. Phys., 78, 746 (2003) https://doi.org/10.1016/S0254-0584(02)00421-2
  22. Y. Li, M. J. Yang, and Y. She, Talanta, 62, 707 (2004) https://doi.org/10.1016/j.talanta.2003.09.011
  23. R. Alessio, D. B. Dell'Amico, F. Calderazzo, U. Englert, A. Guarini, L. Labella, and P. Strasser, Helv. Chim. Acta., 18, 219 (1998)
  24. D. B. Dell'Amico, F. Calderazzo, L. Labella, F. Marchetti, and G. Pampaloni, Chem. Rev., 103, 3857 (2003) https://doi.org/10.1021/cr940266m
  25. M. S. Park, T. H. Lim, Y. M. Jeon, J. G. Kim, S. W. Joo, and M. S. Gong, J. Colloid Interface Sci., in press
  26. A. L. Dearden, P. J. Smith, D.-Y. Shin, N. Reis, B. Derby, and P. O'Brien1, Macromol. Rapid Commun., 26, 315 (2005) https://doi.org/10.1002/marc.200400445
  27. O. L. A. Monti, J. T. Fourkas, and D. J. Nesbitt, J. Phys. Chem. B, 108, 1604 (2004) https://doi.org/10.1021/jp030492c
  28. N. Singh and P. K. Khanna, Mater. Chem. Phys., 104, 367 (2007) https://doi.org/10.1016/j.matchemphys.2007.03.026