• Title/Summary/Keyword: polyamide-66

Search Result 29, Processing Time 0.021 seconds

Thermal Conductivity and Mechanical Properties of Magnesium Oxide Reinforced Polyamide-66 Composites

  • Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.205-209
    • /
    • 2015
  • Magnesium oxide (MgO) reinforced polyamide-66 (PA66) composites were prepared through melt-compounding method in order to determine the possibility of using MgO particle as conductive filler in the polymer-based composite. The effects of MgO filler content on the thermal conductivity and mechanical properties for the PA66/MgO composites were investigated. The results showed that the addition of MgO filler to the PA66 matrix led to a large increase in thermal conductivity of the PA66/MgO composites. Tensile strengths of the PA66/MgO composites were slightly decreased as MgO filler loading increased. However, flexural strength and flexural modulus were improved with increasing filler loading. Notched Izod impact strengths were dramatically lowered by the addition of MgO filler.

Evaluation of Tribological Characteristics of Diamond-Like Carbon (DLC) Coated Plastic Gear (플라스틱 기어의 트라이볼로지적 특성 향상을 위한 DLC 코팅 적용)

  • Bae, Su-Min;Khadem, Mahdi;Seo, Kuk-Jin;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Demand for plastic gears are increasing in many industries due to their low production cost, light weight, applicability without lubricant, corrosion resistance and high resilience. Despite these benefits, utilizing plastic gears is limited due to their poor material properties. In this work, DLC coating was applied to improve the tribological properties of polyamide66 gear. 0 V, 40 V, and 70 V of negative bias voltages were selected as a deposition parameter in DC magnetron sputtering system. Pin-on-disk experiment was performed in order to investigate the wear characteristics of the gears. The results of the pin-on-disk experiment showed that DLC coated polyamide66 with 40 V of negative bias voltage had the lowest friction coefficient value (0.134) and DLC coated PA66 with 0 V of negative bias voltage showed the best wear resistance ($9.83{\times}10^{-10}mm^3/N{\cdot}mm$) among all the specimens. Based on these results, durability tests were conducted for DLC coated polyamide66 gears with 0 V of negative bias voltage. The tests showed that the temperature of the uncoated polyamide66 gear increased to about $37^{\circ}C$ while the DLC coated gear saturated at about $25^{\circ}C$. Also, the power transmission efficiency of the DLC coated gear increased by about 6% compared to those without coating. Weight loss of the polyamide66 gears were reduced by about 73%.

Mechanical Properties and Morphology of Polyamide/Polypropylene Blends

  • Kim, Su Young;Ha, Jin Uk;Shin, Donghyeok;Jung, Wooseok;Lee, Pyoung-Chan
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • This study examined the effects of the addition of maleic anhydride-grafted polypropylene (PP-g-MA) and polyolefin elastomer (POE) on polyamide 66 (PA66) and polypropylene (PP) blends. The blends of PA66/PP with PP-g-MA and POE were prepared using a twin screw extruder. Mechanical testing results revealed that the tensile, flexural, and izod impact strengths of the blends were maximized at a PP-g-MA content of 2 phr. The increased mechanical strength of the blends with PP-g-MA was attributed to the compatibilizing effect of the PA66 and PP blends. In addition, as the POE content increased, the impact strength of the blends increased. However, at a high POE content, the tensile and flexural strengths decreased, seemingly because of the lower mechanical properties of POE.

The Study on Physical Properties and Applicability of Material of Polyamide-66/Glass Fiber Blends Composition to the Eyewear Frame (Polyamide-66/Glass fiber 블렌드 조성물의 물리적 특성 및 안경테 소재로써의 적용성에 관한 연구)

  • Son, Jin-Young;Lee, Ji-Eun;Choi, Kyung-Man;Bae, Yu-Hwan;Kim, Ki-Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.365-371
    • /
    • 2013
  • Purpose: In this study, we evaluated the physical and thermal properties of the compositions made by blending glass fiber (GF) of different contents into glass fiber polyamide-66, and investigated if the compositions applying to the glasses frame to replace the TR-90, which is polyamide-12 resin used as an injection-type spectacle frame material. Methods: To investigate the characteristics change of polyamide-66 (PA-66) compositions with the change of the content of glass fibers, we produced a composition of the content by using a twin-screw extruder. The mechanical strength of the composition production was measured and coating properties as well as cutting processability were evaluated. We evaluated the applicability of the glasses frame by comparison the results of new compositions with characterizations of traditional TR. Results: For the results of the characterization of Polyamide-66/GF composition, we found that the higher increase of content of the glass fiber, the less mold shrinkage rate, and the mechanical strength was increased. Tensile strength increased from $498kg/cm^2$ for 0 wt% of the content of the glass fibers to $849kg/cm^2$ for 30 wt% of the content of the glass fibers. As a result of a coating evaluation, the strength of coating was 4B in the GF 5wt% and 5B, which was extremely good coating characteristics, in the over than GF 5 wt%. Conclusions: In case that 30 wt% of the glass fiber was blended, the mechanical strength was greatly improved, the hardness was increased, injection temperature increased due to increase of the viscosity, and the flow mark of the product may occur. The paint coating of PA-66 blended with glass fiber was all excellent. With general evaluating physical properties and workability properties it was determined that around 10 wt% of the content of the glass fibers was possible to apply a spectacle frame.

Hydrolysis Resistance and Mechanical Property Changes of Glass Fiber Filled Polyketone Composites Upon Glass Fiber Concentration

  • Kim, Sung Min;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Hydrolysis resistance and mechanical property changes of polyketone (POK)/glass fiber (GF) composites were investigated for GF concentrations varying between 30 and 50%. The hydrolysis resistance of GF filled POK and polyamide66 (PA66, hydrolysis resistant grade) composites were compared. As shown by the experimental results, increasing the immersion time of the composites in a monoethylene glycol (MEG)/water solution at $120^{\circ}C$ had no impact or resulted in slightly decreased mechanical properties such as the tensile strength, tensile modulus, and strain at break in case of POK composites, whereas the mechanical properties of PA66 composites showed a significant drop. Increasing GF concentrations increased the tensile strength, tensile modulus, flexural strength, and flexural modulus of POK composites; however, impact strength did not show significant changes. Hydrolysis mechanisms of POK and PA66 are discussed.

The Effects of Electron Beam Irradiation on Thermal and Mechanical Properties of Electrospun Nylon 66 Nano-web (전기방사된 나일론66 나노웹의 열적·기계적 특성에 전자선 조사가 미치는 영향)

  • Jeun, Joon Pyo;Kang, Hyo-Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • Polyamide 66 (PA66) nanofibers with Triallyl cyanurate (TAC) were obtained by electrospinning of formic acid and chloroform solution. Electron beam irradiation of PA66 nanofiber with and without TAC was carried out over a range of absorbed doses (20~100 kGy) in nitrogen. The characterization of the irradiated PA66 nanofibers and PA66 nanofibers with TAC was done by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and universal testing machine (UTM). The results of the SEM image analysis confirmed that the morphology of PA66 nanofibers was not altered by electron beam. The amount of TAC in PA66 nanofiber with TAC was identified by $^1H-NMR$ analysis. The degradation temperature of PA66 nanofibers with TAC at an absorbed dose of 20~100 kGy was higher than the irradiated PA66 nanofiber without TAC. On the other hand, the decreasing rate of modulus of irradiated PA66 nanofibers with TAC was less than PA66 nanofibers.

Hydrophilicity Improvement of Polyamide66/Polyphenylene Blends by Plasma Surface Treatment (Polyamide66/Polyphenylene 블렌드의 플라스마 표면처리를 통한 친수성 향상)

  • Ji Young-Yeon;Kim Sang-Sik
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.391-396
    • /
    • 2006
  • It has been reported that plasma treatments are used to modify surface properties of polymers such as adhesivity hydrophobicity and hydrophilicity. Using plasma treatment, interfacial pro-perty can be introduced to a polymer surface without affecting the desired bulk properties of a material. In this study, commercial polyamide66 (PA66) /polyphenylene (PPE) polymer was modified by plasma treatment under a various gas specious for elimination of organic compound and polymer surface property with hvdrophilicity. PA66/PPE polymer with hydrophilicity was treated by RF plasma vacuum system under a various parameter such as gas specious, processing time and partial pressure. Hydrophilicity of PA66/PPE was confirmed by calculation of the surface free energy from contact angle measurement. The highest surface free energy of $50.03 mJ/m^2$ with the lowest contact angle of $14^{\circ}$ was obtained at plasma process power of 100 W, treatment time of 2 min and $Ar/O_2$ gases of 100 and 200 sccm. Moreover the change of organic compounds on the polymer surface was analyzed by fourier transforms infrared spectrometry (FTIR).

Electrical Properties of CNT and Carbon Fiber Filled Hybrid Composites Based on PA66

  • Lee, Minji;Park, Se-Ho;Jhee, Kwang-Hwan;Kye, Hyoungsan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.65-71
    • /
    • 2021
  • In recent times, the demand for electronic devices has increased because of advancements in the electronics industry. Consequently, research on shielding against electromagnetic interference (EMI) from electronic devices has also progressed significantly. In particular, research on imparting electrical conductivity to plastic has seen substantial progress. In this study, the effect of hybrid fillers comprising carbon fiber (CF) and carbon nanotubes (CNTs) on the electrical properties of polyamide 66 (PA66) composites was investigated. PA66 composites were prepared using a BUSS Co-Kneader single-screw extruder. EMI shielding effectiveness (SE) increased with the increasing addition of unsized CF (UCF), sized CF (SCF), and CNTs. For the PA66/SCF/CNT hybrid filler composites, EMI SE significantly increased with the increase in SCF content. Finally, the hybrid filler comprising SCF and CNTs may have a synergistic effect on the EMI SE and surface resistivity of PA66/SCF/CNT composites.

A Study on the Commercialization of Polyamide 66/Polypropylene Blend (폴리아마이드 66/폴리프로필렌 블렌드의 상업화 연구)

  • Kim, Seog-Jun;Nam, Byeong-Uk
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.262-272
    • /
    • 2003
  • Maleic anhydride-grafted-polypropylene(PP-g-MA) were used as a blend component and a compatibilizer, respectively, for two reactive blends of polyamide 66(PA 66)PP-g-MA binary blends and PA 66/polypropylene(PP)/PP-g-MA ternary blends. The goal of this work was to investigate the property differences between binary and ternary blends. Tensile strength, flexural modulus, heat deflection temperature, impact strength, melt flow index, and the dependence of melt viscosity on the shear rate were examined. The impact strengths of binary blends were higher than those of ternary blends at all compositions, since the in situ synthesis of PP-g-PA 66 copolymer through the imide formation between the amine end group of PA 66 and the anhydride group of PP-g-MA gave the increase of molecular weight and was more popular in binary blends than in ternary blends. In case of ternary blends, most of the properties were superior to those of binary blends, owing to the better properties of PP compared with PP-g-MA. The toughened binary blends with 70/30(PA 66/PP-g-MA) and 80/20 ratios were not commercially applicable due to their poor processibility. So, the ternary blends which showed lower melt viscosities were recommended for the commercial applications.

Characterization of Synthetic Polyamides by MALDI-TOF Mass Spectrometry

  • Choi, Hae-Young;Choe, Eun-Kyung;Yang, Eun-Kyung;Jang, Sung-Woo;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2354-2358
    • /
    • 2007
  • MALDI-TOF-MS technique was applied to obtain structural and compositional information of synthetic polyamides, Nylon6 and Nylon66. Mass spectra of both the original and the hydrolyzed polyamide samples were analyzed using the self calibration method as well as the internal calibration method with the standard materials of known masses. The MALDI-TOF mass spectra of Nylon6 samples showed the presence of protonated, sodiated, and potassiated ions that were assigned to cyclic and NH2/COOH terminated linear oligomers. From the MALDI-TOF mass spectra of Nylon66 samples, the potassiated linear oligomers with three different end groups are identified as well as the cyclic oligomers, i.e., NH2/COOH terminated oligomers, NH2/NH2 terminated oligomers, and COOH/COOH terminated oligomers. Full characterization of the molecular species and end groups present in the polyamide samples has been achieved, and also the changes in mass spectral patterns after the hydrolysis of the samples are presented.