• Title/Summary/Keyword: polyacrylamide,

Search Result 1,291, Processing Time 0.033 seconds

Effect of PCC Pretreatment with Pulp Powder on the Paper Properties (목재펄프 분말을 이용한 PCC 전처리가 종이 성질에 미치는 영향)

  • Kwak, Gun Ho;Cho, Byoung-Uk;Lee, Yong-Kyu;Won, Jong Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • Various approaches have been tried to reduce the emission of carbon dioxide in paper industry. One of important approaches is to use PCC manufactured from emission gas as a filler. However, it was recognized that PCC is inferior to other fillers in the paper strength properties of view. Therefore, pretreatment of PCC with pulp powder was tried to mitigate the strength reduction of paper. Pretreatment of PCC with pulp powder improved the bulk(7.4~12.9%) and air permeability(24.8~42.98%), but there is no significant change in opacity. Tensile index, burst index and stiffness were decreased by the use of pretreated PCC with pulp powder. Anionic and cationic PAM were used as a additive for PCC pretreatment in order to improve strength properties. There was no significant change in bulk in all kinds of PAM used in this study. Most strength properties were improved by the pretreatment of PCC with the anionic and cationic PAM and pulp powder, although the opacity and stiffness were more or less decreased.

Production of Glucoamylase from Hybrid Constructed by Intergenic Nuclear Transfer between Saccharomycopsis sp. and Saccharomyces sp. (핵전이법에 의해 형성된 Saccharomycopsis 속과 Saccharomyces 속의 잡종에서 glucoamylase 생산에 관한 연구)

  • 양영기;임채영;김종권;문명님;이영하
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.182-188
    • /
    • 2001
  • The glucoamylase was purified from the induced culture filtrate of hybrid between Saccharomycopsis sp. and Saccharomycopsis sp. made by nuclear transfer and characterized for some enzyme properties. The enzymewas purified 76-fold in an overall yield of 16% from the culture medium by ammonium sulfate fractionation,Sephadex G-150 gel permeation chromatography and DEAE-Sephadex A-50 ion exchage chromatography.The molecular weight of the purified glucoamylase was estimated to be 57.5 KDa on SDS-polyacrylamidegel electrophoresis and Sephadex G-150 gel permeation chromatography. The purified enzyme was active atpH-5.0 and $40^{\circ}C$. The Km value for soluble starch was 2.6 mg/ml. The enzymatic activity was stimulated inthe presence of TEX>$Ca^{2+}$, EDTA, $Co^{2+}$, $Mg^{2+}$, and $Mn^{2+}$

  • PDF

Purification and Characterization of High-Molecular-Weight $\beta$-Glucosidase from Trichoderma koningii (Trichoderma koningii가 생성하는 고분자량 $\beta$-glucosidase의 정제 및 특성)

  • 맹필재;정춘수;하영칠;홍순우
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.251-262
    • /
    • 1986
  • High-molecular-weight ${\beta}-glucosidase$ (EC 3.2.1.21) was purified from the culture filtrate of Trichoderma koningii through a four-step procedure including chromatography on Bio-Gel P-150, DEAE-Sephadex A-50 and SP-Sephadex C-50; and chromatofocusing on Polybuffer exchanger PBE 94. The molecular weight of the enzyme was determined to be about 101,000 by SDS-polyacrylamide gel electrophoreses, and the isoelectric point was estimated to be 4.96 by analytical isoelectric focusing. The temperature optimum for activity was about $55^{\circ}C$, and the pH optimumwas 3.5. The enzyme was considerably thermostable, for no loss of activity was observed when the enzyme was preincubated at $60^{\circ}C$ for 5h. Km values for cellobiose, gentiobiose, sophorose, salicin and $p-nitrophenyl-{\betha}-D-glucoside$ were 99.2, 14.7, 7.09, 3.15 and 0.70 mM, respectively, which indicates that the enzyme has much higher affinity towards $p-nitrophenyl-{\betha}-D-glucoside$ than towards the other substrates, especially cellobiose. Substrate inhibition by $p-nitrophenyl-{\betha}-D-glucoside$ and salicin was observed at the conecntrations exceeding 5mM. Gluconolactone was a powerful inhibitor against the action of the enzyme on $p-nitrophenyl-{\betha}-D-glucoside\;(K_i\;37.9\;{\mu}M)$, wherease glucose was much less effective ($K_i$ 1.95 mM). Inhibition was of the competitive type in each case. Transglucosylation activity was detected shen the readtion products formed from $p-nitrophenyl-{\betha}-D-glucoside$ by the enzyme were analysed using high-performance liquid chromatography.

  • PDF

Comparisons of Soluble Protein Bands for Pleurotus Species and Interspecific Crosses of Pleurotus Species (느타리버섯속균과 교잡종에 대한 단백질 밴드에 의한 분류)

  • Kim, Myong-Jo;Shim, Jae-Ouk;Lee, Youn-Su
    • The Korean Journal of Mycology
    • /
    • v.25 no.1 s.80
    • /
    • pp.20-25
    • /
    • 1997
  • In comparison of three Pleurotus species and their selfed and crossed isolates using SDS-polyacrylamide gel electrophoresis of total soluble proteins, Pleurotus ostreatus 201 showed low similarity to selfed or P. ostreatus 201 crossed ones. Pleurotus ostreatus 2042 showed low similarity to selfed or P. ostreatus 2042 crossed ones. However, P. ostreatus $2042{\times}P$. ostreatus 202, P. ostreatus $2042{\times}P$. sajor-caju, and P. ostreatus $2042{\times}P$. ostreatus 900 showed high similarity. Pleurotus ostreatus 202 showed low similarity to selfed or crossed ones. Pleurotus sajorcaju showed low similarity to selfed or crossed ones. Pleurotus ostreatus 900 showed low similarity to selfed or crossed ones. However, selfed P. ostreatus and P. $ostreatus{\times}P$. florida showed high similarity. Pleurotus florida and selfed P. florida showed high similarity, too.

  • PDF

Molecular Cloning and Expression of Human Poly (ADP-ribose) Synthetase cDNA in E. Coli (인간 Poly(ADP-ribose) Synthetase cDNA의 클로닝 및 대장균에서의 발현)

  • 이성용;김완주;이태성;박상대;이정섭;박종군
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.248-256
    • /
    • 1996
  • The present study was performed to clone and express human poly (ADP-ribose) synthetase (PARS) cDNA in E coli. For these purposes, the CDNA for human poly (ADP-ribose) synthetase, encoding the entire protein, was cloned into pGEM-7Zf(+). The resulting recombinant plasmid pPARS6.1 was restriction enzyme mapped and its identity was confirmed by Southern blot analysis. The pPARS6. 1 contained full-length CDNA of human PARS and the nudeotide sequences were identical with those reported previously. The recombinant protein which migrated as a unique 120 kDa band on 10% SDS-polyacrylamide gels, was identified as PARS by Southwestern blots using nick-translated DNA probes and by activity gels and activity blots using 32 P-NAD as a substrate for poly (ADP-ribose) synthetase (PARS). The signals corresponding to 120 and 98 kDa proteins were obtained following IPTG (0.4 mM) induction of the PARS cDNA cloned into Xba I-digested pGEM-7Zf(+) vector. Nonspecific signals corresponding to 45 and 38 kDa proteins were also shown in both IPTG-induced and noninduced cells. The nonspecific proteins may be products of incomplete translation or proteolytic products of intact PARS.

  • PDF

Chemical Modification of 5-Lipoxygenase from the Korean Red Potato

  • Kim, Kyoung-Ja
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.172-178
    • /
    • 2000
  • The lipoxygenase was purified 35 fold to homogeneity from the Korean red potato by an ammonium sulfate precipitation and DEAE-cellulose column chromatography. The simple purification method is useful for the preparation of pure lipoxygenase. The molecular weight of the enzyme was estimated to be 38,000 by SDS-polyacrylamide gel electrophoreses and Sepharose 6B column chromatography. The purified enzyme with 2 M $(NH_4)_2SO_4$ in a potassium phosphate buffer, pH 7.0, was very stable for 5 months at $-20^{\circ}C$. Because the purified lipoxygenase is very stable, it could be useful for the screening of a lipoxygenase inhibitor. The optimal pH and temperature for lipoxygenase purified from the red potato were found to be pH 9.0. and $30^{\circ}C$, respectively. The Km and Vmax values for linoleic acid of the lipoxygenase purified from the red potato were $48\;{\mu}M$ and $0.03\;{\mu}M$ per minute per milligram of protein, respectively. The enzyme was insensitive to the metal chelating agents tested (2 mM KCN, 1 and 10mM EDTA, and 1 mM $NaN_3$), but was inhibited by several divalent cations, such as $Cu^{++}$, $Co^{++}$ and $Ni^{++}$. The essential amino acids that were involved in the catalytic mechanism of the 5-lipoxygenase from the Korean red potato were determined by chemical modification studies. The catalytic activity of lipoxygenase from the red potato was seriously reduced after treatment with a diethylpyrocarbonate (DEPC) modifying histidine residue and Woodward's reagent (WRK) modifying aspartic/glutamic acid. The inactivation reaction of DEPC (WRK) processed in the form of pseudo-first-order kinetics. The double-logarithmic plot of the observed pseudo-first-order rate constant against the modifier concentration yielded a reaction order 2, indicating that two histidine residues (carboxylic acids) were essential for the lipoxygenase activity from the red potato. The linoleic acid protected the enzyme against inactivation by DEPC(WRK), revealing that histidine and carboxylic amino acids residues were present at the substrate binding site of the enzyme molecules.

  • PDF

Characterization of a Novel Glutathione S-Transferase from Pseudomonas sp. DJ77

  • Jung, U-Hee;Cho, Young-Sik;Seong, Hark-Mo;Kim, Seong-Jae;Kim, Young-Chang;Chung, An-Sik
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.111-115
    • /
    • 1996
  • A novel glutathione S-transferase from Pseudomonas sp. DJ77 was expressed in E. coli and purified by glutathione-affinity chromatography. The enzyme was composed of two identical subunits. The molecular size of the enzyme was 42 kDa by sephadex G-150 gel permeation chromatography and Mr of each subunit was 23 kDa by sodium dodecylsulfate-polyacrylamide gel electrophoresis. pI value of the enzyme was approximately 5.8 by isoelectric focusing. This enzyme showed the highest activity toward 1-chloro-2,4-dinitrobenzene as the electrophilic substrate. The relative activities toward p-nitrobenzyl chloride and 1,2-dichloro-4-nitrobenzene were 3.8% and 1.3% of the activity toward 1-chloro-2,4-dinitrobenzene, respectively. $K_m$ and $V_{max}$ values for 1-chloro-2,4-dinitrobenzene calculated by Lineweaver-Burk plot were 0.76 mM and $14.81\;{\mu}mol/min/mg$, respectively, and those for glutathione were 6.23 mM and $64.93\;{\mu}mol/min/mg$, respectively. The enzyme showed highest glutathione S-transferase activity at pH 8.0 and was stable between pH 6.0 and 9.0. The enzyme retained its activity up to $35^{\circ}C$ for 90 min but was unstable above $45^{\circ}C$.

  • PDF

Isolation and Purification of Anticoagulant Polysaccharide Compound from Fermented Edible Brown Seaweed, Laminaria ochotensis

  • Nikapitiya Chamilani;Zoysa Mahanama De;Ekanayake Prashani Mudika;Park Ho-Jin;Lee Je-Hee
    • Journal of Aquaculture
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • Anticoagulant activities of a fermented edible brown alga, Laminaria ochotensis was investigated. L. ochotensis was fermented with 15% sugar (w/v) at $25^{\circ}C$ for 10 weeks. Anticoagulant activity was measured from the supernatant of algal mixture at biweekly intervals up to $10^{th}$ week by activated partial thromboplastin (APTT), prothrombin time (PT) and thrombin time (TT) assay using citrated human plasma. Sample having high APTT activity $(6^{th}\;week)$ was filtered, ethanol precipitated and freeze-dried. The polysaccharide compound having anticoagulant activity was purified by DEAE ion exchange chromatography followed by Sepharose-4B gel filtration chromatography. Anticoagulant activity, polysaccharide concentration, and heparin like activity were determined for the collected fractions by APTT, $phenol-H_2SO_4$, and glycosaminoglycan assay, respectively. The anticoagulant activity assay showed that the activity was increased up to $6^{th}$ week, and decreased thereafter. The concentration of our purified compound was $31.0{\mu}g/ml$ and showed higher APTT activity than commercial heparin. At the same concentration of $31.0{\mu}g/ml$, the heparin showed 186.5 sec activity while our purified compound showed an activity of 386 sec. Single spot on agarose gel electrophoresis showed that the compound was purified and polyacrylamide gel electrophoresis (PAGE) results revealed that the molecular mass of the purified polysaccharide compound was between 60 and 500 kDa. Therapeutic interest of the algal polysaccharide as an anticoagulant has recently been in highlighted. This purified anticoagulant compound from fermented L. ochotensis can be used as a model for anticoagulant agent or could be developed as an anticoagulant agent. This study can be extended to identify the structure and chemical composition of the purified polysaccharide, and to establish a relationship between structure and the function of the identified anticoagulant compounds.

Purification and Enzymatic Properties of Myrosinase in Korean Mustard Seed(Brassica juncea) (한국산 겨자중 Myrosinase의 정제 및 효소학적 특성)

  • 신창식;서권일;강갑석;안철우;김용관;심기환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.4
    • /
    • pp.687-694
    • /
    • 1996
  • Myrosinase was purified from Korean mustard seed(Brassica juncea) by a sequential process of DEAE-cellulose, concanavalin A-sepharose, and Superose 6 chromatography. The molecular weight of puri-fied myrosinase(II-2) determined by SDS-polyacrylamide electrophoresis was 67KD. About a 248-fold purification for myrosinase II-2 was obtained after Superose 6 chromatography. Optimum pH of the myrosinase was 7.0 and optimum temperature of the enzyme was $3^{\circ}C.$ The enzyme was stable at pH 7.0, and below $30^{\circ}C.$ Cu, Hg and Fe ion significantly inhibited the enzyme activity, but ascorbic acid enhanced, resulting in a maximum activity by 1mM ascorbic acid. Among tile ascorbic acid ana-logues, dehydroascorbic acid inhibited the enzyme activity, whereas others showed a little effect. Reducing agents such as 2-mercaptoethanol and dithiothreitol inhibited the enzyme activity, but the reducing agents with ascorbic acid was enhanced enzyme activity.

  • PDF

Removal of Lead by Anherobacter sp. (Antherobacter sp.에 의한 납 제거)

  • 안갑환;서근학
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 1998
  • The biosorption of heavy metals has received a lot of attraction for application of metal ions treatment. In this work, we studied with Arthrobactor sp., screening from a wastewater containing heavy metals. The Pb uptake capacity of Arthrobactor sp. was nearly 146.9 mg Pb/g dry biomass(initial concentration, 500 may L), whereas the Pb uptake capacity of Sacchuomyces cerevisiae and Sacchuomyces uvuum were only around 39.40 and 35.65 mg Pb yg dry biomass, respectively. The Pb and Cr were removed from metal solution much more effeciently than were the other metals(Cd and Cu). The Pb uptake capacity of Aythrobactor sp. increased with increasing in pH(1.8, 3.0 and 4.0) and decreased with Increaslng of biomass concentration. At pH 4.0, the Pb uptake capacity reached 244 mg Pb/g dry biomass in Pb initial concentration of 1000 mg/L. The Pb uptake capacity of Ayhol)actor sp. treated by KOH and $CaCl_2$ were increased above values obtained with untreated Ayurobactor sp. However, the Pb uptake capacity fore the breakthrough points were reached.

  • PDF