• 제목/요약/키워드: polyacrylamide,

Search Result 1,289, Processing Time 0.028 seconds

Streptomyces coelicolor 의 Catalase 들의 분석

  • 김형표;이종수;하영칠;노정혜
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.291-298
    • /
    • 1992
  • Srrepromycec. corlirolar produces at least 4 catalase activity bands with different electrophoretic mobilities on polyacrylamide gel which vary during development. Spores and mycelia at stationary phase produced all the activity bands(Cat1. 760 kr); Cat3-I, 170 kD: Cat3-2, 140 kD: Cat3-3. 130 kD; Cat4, 70 kD) except for Cat2 (300 kD). Mycelia at mid-logarithmic phase produced only Cat2 and Cat3-2 bands, and mycelia at late-logarithmic phase produced bands except Catl and Cat\ulcorner. Catalase-deficient mutants were screened in S. coelicalur by H201 bubbling test following NTG mutagenesis. Wc tested sevcral non-bubbling or slow-bubbling mutants for their catalase activities. The overall activities in cell extracts decreased more than 5 fold. Activity bands in native gel selectively decreased in intensity or disappeared. In all the non-bubbling mutants testcd, Cat3-2 band decreased significantly or disappeared. suggesting that Cat3-2 is the major catalase. The selective disappearance of bands in mutants suggest that each band is governed by different genes. We purified catalase activity from -:ell extracts obtained at late-logarithmic phase. Following chromatographies on Sepharose CL-4B. DEAE Sepharose CL-6B. Phcnyl Sepharose CL-4B. and hydroxylapatite columns. only the Cat3-2 activity was obtained. The native form of Cat3-2 has molecular weight of approximately 140 kD, judged by gel electrophoresis. Thc electrophoretic mobility on SDS-polyactylamide gel suggests that this enzyme contains 2 identical subunits of 67 kD.

  • PDF

Characterization of Erythritol 4-Phosphate Dehydrogenase from Penicillium sp. KJ81 (Penicillium sp. KJ81이 생산하는 Erythritol 4-Phosphate Dehydrogenase의 특성)

  • Yun, Na-Rae;Park, Sang-Hee;Lim, Jai-Yun
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.200-207
    • /
    • 2009
  • In this study, the characterization of purified erythritol 4-phosphate dehydrogenase, key enzyme of erythritol biosynthesis, produced by Penicillium sp. KJ81 was investigated. Optimum production conditions of erythritol 4-phosphate dehydrogenase was 1 vvm areration, 200 rpm agitation, at $37^{\circ}C$ for 8 days in the medium containing 30% sucrose, 0.5% yeast extract, 0.5% $(NH_4)_2SO_4$, 0.1% $KH_2PO_4$, and 0.05%$MgCl_2$. Erythritol 4-phosphate dehydrogenase was purified through ultrafiltration and preparative gel electrophoresis from cell extract of Penicillium sp. KJ81. This enzyme was especially active on erythrose 4-phosphate with 1.07 mM of Km value. It gave a single band on native polyacrylamide gel electrophoresis and an isoelectric point of 4.6. The enzyme had an optimal activity at pH 7.0 and $30^{\circ}C$. It was stable between pH 4.0 and 9.0, and also below $30^{\circ}C$. The enzyme activity was completely inhibited by 1mM $Cu^{2+}$ and 1 mM $Zn^{2+}$, but was not significantly affected by other cations tested. This enzyme was inactivated by treatment of tyrosine specific reagent, iodine and tryptophan specific reagent, N-bromosuccinimide. The substrate of the enzyme, erythrose 4-phosphate showed protective effect on the inactivation of the enzyme by both reagents. These results suggest that tryptophan and tyrosine residues are probably located at or near active site of the enzyme.

화학독립영양미생물 Aeromonas sp. strain JS-1의 RubisCO 정제 및 특성

  • Na, Suk-Hyeon;Bae, Sang-Ok;Kim, Min-Jeong;Kim, Seong-Jun;Jeong, Seon-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.461-464
    • /
    • 2002
  • A Chemoautotroph identified as an Aeromonas sp. strain JS-1 was isolated from fresh water. Aeromonas sp. strain JS-1 used the $H_2$ and $CO_2$ as energy and carbon sources, respectively. Growth characteristics for improving the $CO_2$ fixation rate were examined in batch cultivation. Its results shown that the optimal growth appeared at culture conditions of $35^{\circ}C$, pH 7 and NaCl 0.1%(w/v). Some hydrogen-oxidizing bacteria were reported that the enzyme activity of ribulose 1,5-bisphosphate carboxylase- oxygenase (RubisCO-EC 4.1.1.39), in the key enzyme of the Calvin-Benson cycle. A RubisCO was purified from a chemoautotrophic bacterium, Aeromonas sp. strain JS-1. the enzyme was purified by ammonium sulfate precipitation, DEAE-sepharose CL-6B and gel filtration chromatography. The RubisCO showed that molecular mass was about 560KDa from gel filtration chromatography and nondenaturing PAGE, and the RubisCO was confirmed to consist of $L_8S_8$ enzyme structure by sodium dodecyl sulfate polyacrylamide gel electrophoresis. A large subunit was about 56KDa and small one was about 15kDa. The Km values of the enzyme for ribulose 1,5-bisphosphate(RUBP), $NaH^{14}CO_3$, and $Mg^{++}$ were estimated to be 0.25mM, 5.2mM, and 0.91mM, respectively. The optimum temperature for RubisCO enzymatic activity were $50^{\circ}C$, and the enzymatic activity was stable up to $45^{\circ}C$.

  • PDF

Purification and Characterization of the Extracellular Alginase Produced by Bacillus licheniformis AL-577 (알긴산 분해균 Bacillus licheniformis AL-577가 생산하는 균체외 효소의 정제 및 특성)

  • Uo, Meung-Hee;Joo, Dong-Sik;Cho, Soon-Yeong;Min, Tae-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.2
    • /
    • pp.231-237
    • /
    • 2006
  • The extracellular enzyme alginase produced by Bacillus licheniformis AL-577 was purified by ion chromatography on CM-Cellulose column, DEAE-Sepharose column, and followed by gel filtration on Sephadx G-100 column. The optimum pH and temperature for the activity of the purified enzyme were 6.0 and $35^{\circ}C$, respectively. The enzyme was stable at the pH range of $6.0\~9.0$ and at $20^{\circ}C$. The molecular weight of the enzyme was estimated to be about 25,500 daltons by SDS-polyacrylamide gel electrophoresis. NaCl was required for high activity of the enzyme. The enzyme was inhibited by $Ba^{2+},\;Co^{2+},\;Cu^{2+},\;Fe^{2+},\;Mg^{2+},\;Zn^{2+},\;NH_4^+$, EDTA, L-cysteine, and 2-mercaptoethanol, while stimulated by DTT, O-phenanthroline, $K^+$ and $Li^+$. This enzyme was proposed to be an alginase specifically degrading alginic acid.

Comparative Study of Proteolytic Activities of Some Commercial Milk Clotting Enzymes on Bovine Skim Milk (상업적 응유효소의 탈지유에 대한 단백질 분해 작용)

  • Shin, H.S.;Kim, S.B.;Lim, J.W.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.801-808
    • /
    • 2002
  • Proteolytic activities of some commercial milk clotting enzymes(rennet, trypsin, pepsin, papain W-40, neutrase 1.5 and protease S) in bovine skim milk containing 0.02% $CaCl_2$ were determined by measuring DH(Degree of Hydrolysis), NPN(Non Protein Nitrogen) and by comparing patterns of SDS-PAGE(Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis). The DH of microbial enzymes(neutrase 1.5 and protease S) and trypsin in bovine skim milk were higher than those of pepsin and papain W-40. The amounts of NPN in the milk treated with trypsin and the other animal enzymes(rennet and pepsin) showed the highest and lowest degrees of proteolysis, respectively. SDS-PAGE showed that trypsin and protease S hydrolyzed $\alpha$-lactalbumin and papain W-40 hydrolyzed $\beta$-lactoglobulin slightly, while neutrase 1.5 hydrolyzed both $\alpha$-lactalbumin and $\beta$-lactoglobulin after treating for 90 min. Trypsin and protease S easily hydrolyzed ${\alpha}_s$-casein and $\beta$-casein, which were not hydrolyzed by rennet. Papain W-40 hydrolyzed $\kappa$-casein more than rennet as shown in SDS-PAGE. Based on the results of the experiments, the DH and NPN of trypsin, neutrase 1.5 and protease S were shown to be higher than those of the other enzymes. The SDS-PAGE patterns of papain W-40 and neutrase 1.5 were similar with that of rennet.

Immune Response of Bacterial Proteins of Staphylococcus intermedius from Canine Atopic Dermatitis (개의 아토피성 피부염에서 분리한 Staphylococcus intermedius 균의 세균단백질의 면역반응)

  • Park, Hee-myung
    • Journal of Veterinary Clinics
    • /
    • v.21 no.1
    • /
    • pp.20-22
    • /
    • 2004
  • Bacterial infection of canine atopic dermatitis is largely caused by Staphylococcus intermedius and may be a superficial or deep pyoderma. The Purpose of this study was to identify the major proteins of S. intermedius cell surface components in humoral immune response of atopic dermatitis dog. Sera samples were obtained from dogs with atopic dermatitis and superficial pyoderma referred to the Veterinary Medical Teaching Hospital, Konkuk University. An isolate of S. intermedius from a clinical case of canine atopic dermatitis was cultured in brain heart infusion broth overnight at $37^{\circ}C$ in aerobic conditions on an orbital shaker. Following culture, Staphylococci were harvested by centrifugation, washed in PBS, and resuspended in PBS containing lysostaphin. The soluble components were separated by centrifugation and were collected. The soluble extract of S. intermedius was separated by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). The proteins were electrophoretically transferred onto nitrocellulose membrane. Western blotting for the specificity of serum IgG antistaphylococcal antibody was performed with anti-dog-IgG and sera obtained from an atopic dermatitis case and a normal dog. The molecular masses of four major proteins of S. intermedius recognized by serum obtained from an atopic dermatitis case were 18, 31, 75, and 110 kDa as determined by Western blot analysis. The present study indicates that most dogs of S. intermedius infection with atopic dermatitis could have a significant humoral immune response to bacterial proteins of the causative organism.

Membrane Proteins and Their Antigenicity of Toxoplasma gondii (yoxoplusmg leondii의 세포막 단백 성분과 그 항원성)

  • Choe, Won-Yeong;Nam, Ho-U;Yu, Jae-Eul
    • Parasites, Hosts and Diseases
    • /
    • v.26 no.3
    • /
    • pp.155-162
    • /
    • 1988
  • Surface membrane proteins of virulent RH strain and tissue cyst-forming Fukaya strain of Toxoplasma gondii were analysed by SDS-polyacrylamide gel electrophoresis after LPO-catalyzed surface iodination and lectin blotting, then identified the zoite-specific antigens. Prior to the analyses, purification of RH tachyzoites from mouse peritoneal exudate and of Fukaya bradyzoites from mouse brain tissues were performed by centrifugation - on the discontinuous Percoll density-gradient. Ta- chysoites were obtained at the interface of 50U and 60% Percoll solution and brain cysts were harvested at the interfaces of 40-50% and 50-60%, then bradyzoites were obtained by treating the cysts with hypertonic solution. The LPO-catalyzed iodination detected 15 KDa and 14 KDa proteins o( brady- zoites and 30 KDa protein of tachysoites as major bands with several other minor bands. But Con A blotting revealed some bands of 200 K∼50 KDa glycoproteins of bradyzoites and 52 KDa band as major and minor bands of 33 K∼20 KDa of tachyzoites. Phytohemagglutinin did not detect any band in the two forms. EITB with anti- Fukaya antibody and anti-RH antibody revealed cross-reactivities between the two forms. Despite the cross-reactivity, anti-Fukaya antibody reacted with 15 KDa band of bradyzoites specifically and, anti-RH antibody with 52 KDa, 30 KDa, and 25 KDa bands of tachyzoites, respectively. It was identified that 15 KDa protein in bradyzoite, which was not a glycoprotein, was a major membrane protein with sufficient antigenicity, and in the case of tacky- zoite, 52 KDa surface glycoprotein (gp52) with specific antigenicity might be added to the major surface protein, p30.

  • PDF

Antigenic protein fractions reacting with sera of sparganosis patients (스파르가눔 항원단백질에 대한 스파르가눔증 환자 혈청의 반응 양상)

  • Choi, Sung-Ho;Kang, Shin-Yong;Kong, Yoon;Cho, Seung-Yull
    • Parasites, Hosts and Diseases
    • /
    • v.26 no.3
    • /
    • pp.163-168
    • /
    • 1988
  • To observe the antigenic protein fractions in saline extract of Spirometra mansoni plerocercoid (sparganum), the crude extract was separated in reducing conditions of sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE). The proteins, transferred by celctrophoresis to introcillulose paper, were reacted with sera from 15 surgically confirmed sparganosis and 24 cysticercosis patients for immunoblotting. Out of 30 identified protein bands in the extract, bands of 29 and 36 kilodaltons (kDa) were the strongest and the most frequently reacting with specific antibody (IgG) in sparganosis sera. Bands of highter molecular weight also reacted with the sera but their frequency of reactions was lower. Sera of cysticercosis reacted with different protein bands in saline extract of sparganum, but the cross reactions were observed in strong antigenic bands of 29 and 36 kDa.

  • PDF

Electrophoretic analysis of the major proteins of bovine erythrocyte membrane: Their relation to slow erythrocyte sedimentation rate (우(牛) 적혈구막(赤血球膜) 단백(蛋白)의 전기영동법(電氣泳動法에) 의한 분석(分析) -낮은 적혈구(赤血球) 심강속도(沈降速度)와의 관계(關係)-)

  • Bahk, Young-woo;Lee, Bang-whan
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.1
    • /
    • pp.13-20
    • /
    • 1989
  • The proteins of the bovine erythrocyte membrane were analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and their relations to the slow sedimentation rate of bovine erythrocytes were investigated by treating the erythrocytes with trypsin. The erythrocyte sedimentation rates of bovine erythrocytes from Holstein and Korean native cattle were very slow compared with the human one (1/7 as slow as the human one) as reported previously. However, when human and Holstein erythrocytes were treated with trypsin (0.2 and 0.5 mg/ml) for 1 hour at ${37^{\circ}C}$, their sedimentation rates were markedly accelerated while the sedimentation rate of Korean native cattle's erythrocytes were not affected. Although the general protein profiles of the bovine erythrocyte membranes were almost similar to that of human, bovine erythrocyte membranes showed one additional protein band, called band Q in this study, which migrated electrophoretically to the mid-position between band 2 and band 3 in human erythrocyte membranes. Treatment of Holstein and human erythrocytes with trypsin caused a decrease or disapperance of the band Q from the erythrocyte membrane. Although the band Q in Korean native cattle's erythroyte membrane was decreased by trypsin treatment of the erythrocytes, the magnitude of the decrement was not so pronounced as in the case of human and Holstein erythrocytes. The glycoprotein profiles of the bovine erythrocyte membranes revealed by periodic acid-Schiff stain showed a marked difference from that of human. The PAS-1 (glycophorin) and PAS-2 (sialoglycoprotein) present in human erythrocyte membrane were almost absent from the bovine erythrocyte membranes. Instead, the bovine erythrocyte membranes showed a strong PAS-positive band near the origin of the electrophorograms, which is named as PAS-B in this study. The PAS-B band was disappered completely by the trypsin treatment of Holstein erythrocytes whereas the PAS-B band in Korean native cattle's erythrocyte membrane still remained after the trypsin treatment. The trypsin treatment of Korean native cattle's erythrocytes, however, led to the appearance of small molecular weight peptides, indicating that the high molecular weight glycoproteins were degraded by trypsin as in human and Holstein ones. These results suggest that the slow sedimentation rate of bovine erythrocytes is due in part to the presence of band Q protein fraction and PAS-B glycoprotein in the bovine erythrocytes.

  • PDF

Electrophoretic analysis of the major protein of erythrocyte membrane in man, bovine, horse, and dog: their relation to erythrocyte sedimentation rate (사람, 소, 말, 개의 적혈구막 단백의 전기 영동법에 의한 분석 - 적혈구 침강 속도와의 관계 -)

  • Bahk, Yeong-woo
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • The protein of the bovine, horse and dog erythrocyte membrane were analyzed by polyacrylamide gel eletrophoresis in sodium dodecyl sulfate and their relation to the sedimentation rate of animal erythrocytes were investigated by treating the erythrocytes with proteinases such as trypsin and chymotrypsin. Protein content in erythrocyte membrane was in human, in Jindo dog, in cattle and in horse, showing similar in among. The erythrocyte sedimentation rates bovine erythrocytes from Hostein and Korean native cattle were very slow compared with the human one(1/7 as slow as the human one) as reported previously. Although the general protein profiles of the bovine erythrocyte membranes were almost similar to that of human, bovine erythrocyte membranes showed one additional protein band, called band Q in this study, which migrated electrophoretically to the mid-position between band 2 and band 3 in human erythrocyte membranes. The erythrocyte sedimentation of race horse were very fast compared with the human one are reported previously. Although the general protein profiles of the race horse erythrocyte membranes were almost similar to that of human, band 3 content was showing higher in race horse(34.7%) than in human(25.3%). The general protein profile of the Jindo dog erythrocyte membrane was almost similar to the human patterns, Jindo dog erythrocyte membranes showed one absent protein band. It was band 7. The glycoprotein profiles of the bovine erythrocyte membranes revealed by periodic acid-Schiff(PAS) stain showed a marked difference from that of human. The PAS-1(glycophorin) and PAS-2(sialoglycoprotein) present in human erythrocyte membrane were almost absent from the bovine erythrocyte membranes showed a strong PAS-positive band near the origin of the electraphorograms, which is named as PAS-B in this study. The PAS-1 and PAS-2 present in human erythrocyte membrane were almost absent from race horse erythrocyte membranes, but PAS-2 was more in only race horse from that of human. The PAS-1 and PAS-2 were absolutely absent from the Jindo dog erythrocyte membrane. These results suggest the slow sedimentation rate of bovine erythrocytes is due in part to the presence of band Q protein fraction and PAS-B glycoprotein in the bovine erythrocytes, and that the fast sedimentation rate of race horse erythrocyte is due in part to the presence of more band 3 protein fraction and PAS-E glycoproteins in the race horse erythrocytes.

  • PDF