• Title/Summary/Keyword: poly (ADP-ribose) polymerase (PARP)

Search Result 262, Processing Time 0.03 seconds

MicroRNA-21 promotes epithelial-mesenchymal transition and migration of human bronchial epithelial cells by targeting poly (ADP-ribose) polymerase-1 and activating PI3K/AKT signaling

  • Zhang, Shiqing;Sun, Peng;Xiao, Xinru;Hu, Yujie;Qian, Yan;Zhang, Qian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.239-253
    • /
    • 2022
  • Epithelial-mesenchymal transition (EMT) is known to be involved in airway remodeling and fibrosis of bronchial asthma. However, the molecular mechanisms leading to EMT have yet to be fully clarified. The current study was designed to reveal the potential mechanism of microRNA-21 (miR-21) and poly (ADP-ribose) polymerase-1 (PARP-1) affecting EMT through the PI3K/AKT signaling pathway. Human bronchial epithelial cells (16HBE cells) were transfected with miR-21 mimics/inhibitors and PARP-1 plasmid/small interfering RNA (siRNA). A dual luciferase reporter assay and biotin-labeled RNA pull-down experiments were conducted to verify the targeting relationship between miR-21 mimics and PARP-1. The migration ability of 16HBE cells was evaluated by Transwell assay. Quantitative real-time polymerase chain reaction and Western blotting experiments were applied to determine the expression of Snail, ZEB1, E-cadherin, N-cadherin, Vimentin, and PARP-1. The effects of the PI3K inhibitor LY294002 on the migration of 16HBE cells and EMT were investigated. Overexpression of miR-21 mimics induced migration and EMT of 16HBE cells, which was significantly inhibited by overexpression of PARP-1. Our findings showed that PARP-1 was a direct target of miR-21, and that miR-21 targeted PARP-1 to promote migration and EMT of 16HBE cells through the PI3K/AKT signaling pathway. Using LY294002 to block PI3K/AKT signaling pathway resulted in a significant reduction in the migration and EMT of 16HBE cells. These results suggest that miR-21 promotes EMT and migration of HBE cells by targeting PARP-1. Additionally, the PI3K/AKT signaling pathway might be involved in this mechanism, which could indicate its usefulness as a therapeutic target for asthma.

Dose-dependent UV Stabilization of p53 in Cultured Human Cells Undergoing Apoptosis Is Mediated by Poly(ADP-ribosyl)ation

  • Won, Jungyeon;Chung, So Young;Kim, Seung Beom;Byun, Boo Hyeong;Yoon, Yoo Sik;Joe, Cheol O.
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.218-223
    • /
    • 2006
  • The effect of poly(ADP-ribosyl)ation on the stability of p53 in SK-HEP1 cells treated with UV light was examined. Intracellular levels of p53 increased in cells treated with a low dose of UV light ($20J/m^2$), whereas they increased but then declined after a higher dose of UV ($100J/m^2$). Intracellular levels of p53 in the UV treated SK-HEP1 cells were dependent on the UV dose. Use of proteasome inhibitors revealed that p53 is degraded by proteasomal proteolysis after high doses of UV light. We present evidence that, at low doses, poly(ADP-ribose)polymerase (PARP) poly(ADP-ribosyl) ates p53 and protects it from proteasomal degradation before caspase-3 is activated, whereas at high doses the cells undergo UV induced apoptosis and PARP is cleaved by caspase-3 before it can protect p53 from degradation. Destabilization of p53 by cleavage of PARP may be important in cell fate decision favoring apoptosis.

The Apoptosis-inducing Effect of Radix Aconiti Extract in HepG2 Human Hepatoma Cells (HepG2 간암세포에 대한 부자 추출물의 고사 유도 효과)

  • 권강범;김은경;정은실;심정섭;김강산;신병철;송용선;류도곤
    • The Journal of Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.33-40
    • /
    • 2004
  • Objective : This study investigated the apoptotic effect and its mechanism of Radix Aconiti (RA) extract and aconitine, which is a major constituent of RA, in HepG2 human hepatoma cells. Methods : We used MTT and DNA fragmentation assay to investigate cell viability and apoptotic effect on RA extract-treated HepG2 cells. In addition, to clarify the mechanism of RA extract-induced apoptosis, we applied caspase-3 enzyme activity assay and Western blotting method on poly-(ADP-ribose) polymerase (PARP) protein expression. Results : Treatment with RA extract resulted in the decrease of cell viability, and this effect was caused from apoptosis as confirmed by discontinuous fragmentation of DNA in HepG2 cells, but aconitine did not. Also, RA extract-treated HepG2 cells induced the activation of caspase-3 enzyme activity in time- and dose-dependent manners, which was accompanied by the cleavage of 116 kD PARP to 85 kD product. Conclusions : These results suggest that the apoptotic effects of RA extract on HepG2 cells could not be explained by aconitine. Additionally, RA extract induced apoptosis in hepatoma cells through caspase-3 activation and subsequent PARP cleavage.

  • PDF

Poly(ADP-ribose) protects vascular smooth muscle cells from oxidative DNA damage

  • Zhang, Chao;Luo, Tao;Cui, Shijun;Gu, Yongquan;Bian, Chunjing;Chen, Yibin;Yu, Xiaochun;Wang, Zhonggao
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.354-359
    • /
    • 2015
  • Vascular smooth muscle cells (VSMCs) undergo death during atherosclerosis, a widespread cardiovascular disease. Recent studies suggest that oxidative damage occurs in VSMCs and induces atherosclerosis. Here, we analyzed oxidative damage repair in VSMCs and found that VSMCs are hypersensitive to oxidative damage. Further analysis showed that oxidative damage repair in VSMCs is suppressed by a low level of poly (ADP-ribosyl)ation (PARylation), a key post-translational modification in oxidative damage repair. The low level of PARylation is not caused by the lack of PARP-1, the major poly(ADP-ribose) polymerase activated by oxidative damage. Instead, the expression of poly(ADP-ribose) glycohydrolase, PARG, the enzyme hydrolyzing poly(ADP-ribose), is significantly higher in VSMCs than that in the control cells. Using PARG inhibitor to suppress PARG activity facilitates oxidative damage-induced PARylation as well as DNA damage repair. Thus, our study demonstrates a novel molecular mechanism for oxidative damage-induced VSMCs death. This study also identifies the use of PARG inhibitors as a potential treatment for atherosclerosis. [BMB Reports 2015; 48(6): 354-359]

Ultraviolet Radiation-Induced Apoptosis is Inversely Correlated with the Expression Level of Poly(ADP-ribose) Polymerase

  • Oh, Kyu Seon;Lee, Dong Wook;Chang, Jeong Hyun;Moon, Yong Suk;Um, Kyung ll
    • Animal cells and systems
    • /
    • v.5 no.1
    • /
    • pp.77-83
    • /
    • 2001
  • The present study was conducted to elucidate whether the expression level of poly(ADP-ribose) polymerase (PARP) is related to the ultraviolet radiation (UV)-induced apoptosis. After treatment of the mammalian cell lines HeLa S3 and Chinese hamster ovary (CHO) with 50 J/m2 UV, induction of apoptosis was determined by several means during 24 h post-incubation. Incidence of apoptosis was much lower in CHO than HeLa S3 cells based on the percentage of apoptotic cells in terms of morphological changes in nucleus or direct counting of viable cells and qualitative or quantitative DNA fragmentation. Interestingly, when the expression level of PARP was measured by western blotting, the amounts of PARP that was retained at each time point inversely correlated with the incidences of apoptosis in these cells. Concomitant with generation of the 85 kDa fragment, 116 kDa PARP disappeared in HeLa S3 within 6 h after UV treatment, whereas a fair amounts of 116 kDa band was still retained in CHO cells at 36 h post-incubation. This inverse relationship was also observed in the adaptive response system, in which cells weve treated with a high dose of UV after pretreatment with a low dose. As expected, typical adaptive responses appeared in CHO cells but not in HeLa cells, showing greater cell viability and lesser DNA fragmentation. During the adaptive response in CHO cells, PARP was expressed at much higher level compared to the single, high dose-treated cells. Interestingly, even though PARP was induced at 6 h post-incubation In both cell types, its expression was more prominent in CHO cells. Thus, our data indicate that the retained level of intact PARP against UV damage inversely correlates with incidence of apoptosis in mammalian cells, and also suggest that a machinery to protect the PARP degradation against UV damage exists in CHO but not in HeLa S3 cells.

  • PDF

Apoptosis Induction of MCF-7 Human Breast Carcinoma Cells by Butein (Butein에 의한 MCF-7 유방암 세포의 세포사멸에 의한 항암 효과)

  • Song, Ba-Da;Kim, Sun-Rye;Kim, Sung-Hun;Shin, Yong-Cheol;Ko, Seong-Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.385-389
    • /
    • 2010
  • Butein(3,4,2',4-tetrahydroxychalcone) has been reported anticancer effects in several cancer type, which is prostate, bladder cancer but breast cancer is not. This study was to investigate the antiproliferative effects by butein(3,4,2',4-tetrahydroxychalcone) in MCF-7 human breast carcinoma cells. We invastigated the effects of dose-dependently cell growth inhibition by butein, which could be proved by WST-1 assay. Also, flow cytometry analysis was butein increase percentage of subG1 phase. As well as, butein induces apoptosis through the expression of caspase-8,-3 and poly(ADP-ribose) polymerase(PARP) activation but not in DMSO treated cells. Taken together, this results suggest that butein induced MCF-7 apoptosis through extrinsic pathway and thus may have potential tumor suppressor in breast cancer.

Association of Poly (ADP-Ribose) Polymerase 1 Variants with Oral Squamous Cell Carcinoma Susceptibility in a South Indian Population

  • Anil, Sukumaran;Gopikrishnan, PB;Basheer, Ashik Bin;Vidyullatha, BG;Alogaibi, Yahya A;Chalisserry, Elna P;Javed, Fawad;Dalati, MHN;Vellappally, Sajith;Hashem, Mohamed Ibrahim;Divakar, Darshan Devang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.4107-4111
    • /
    • 2016
  • Background: Oral cancers account for approximately 2% of all cancers diagnosed each year; however, the vast majority (80%) of the affected individuals are smokers whose risk of developing a lesion is five to nine times greater than that of non-smokers. Tobacco smoke contains numerous carcinogens that cause DNA damage, including oxidative lesions that are removed effectively by the base-excision repair (BER) pathway, in which poly (ADP-ribose) polymerase 1 (PARP-1), plays key roles. Genetic variations in the genes encoding DNA repair enzymes may alter their functions. Several studies reported mixed effects on the association between PARP-1 variants and the risk of cancer development. Till now no reported studies have investigated the association between PARP-1 variants and oral squamous cell carcinoma (OSCC) risk in an Indian population. Materials and Methods: In the present case control study 100 OSCC patients and 100 matched controls were genotyped using PARP1 single nucleotide peptides (SNP's) rs1136410 and rs3219090 using TaqMan assays. Results: The results indicated significantly higher risk with PARP1 rs1136410 minor allele "C" (OR=1.909; p=0.02942; CI, 1.060-3.439). SNP rs1136410 also showed significantly increased risk in patients with smoking habit at C/C genotype and at minor allele C. Conclusions: The PAPR-1 Ala762Val polymorphism may play a role in progression of OSCC. Larger studies with a greater number of samples are needed to verify these findings.

A Novel Reciprocal Crosstalk between RNF168 and PARP1 to Regulate DNA Repair Processes

  • Kim, Jae Jin;Lee, Seo Yun;Kim, Soyeon;Chung, Jee Min;Kwon, Mira;Yoon, Jung Hyun;Park, Sangwook;Hwang, Yiseul;Park, Dongsun;Lee, Jong-Soo;Kang, Ho Chul
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.799-807
    • /
    • 2018
  • Emerging evidence has suggested that cellular crosstalk between RNF168 and poly(ADP-ribose) polymerase 1 (PARP1) contributes to the precise control of the DNA damage response (DDR). However, the direct and reciprocal functional link between them remains unclear. In this report, we identified that RNF168 ubiquitinates PARP1 via direct interaction and accelerates PARP1 degradation in the presence of poly (ADP-ribose) (PAR) chains, metabolites of activated PARP1. Through mass spectrometric analysis, we revealed that RNF168 ubiquitinated multiple lysine residues on PARP1 via K48-linked ubiquitin chain formation. Consistent with this, micro-irradiation-induced PARP1 accumulation at damaged chromatin was significantly increased by knockdown of endogenous RNF168. In addition, it was confirmed that abnormal changes of HR and HNEJ due to knockdown of RNF168 were restored by overexpression of WT RNF168 but not by reintroduction of mutants lacking E3 ligase activity or PAR binding ability. The comet assay also revealed that both PAR-binding and ubiquitin-conjugation activities are indispensable for the RNF168-mediated DNA repair process. Taken together, our results suggest that RNF168 acts as a counterpart of PARP1 in DDR and regulates the HR/NHEJ repair processes through the ubiquitination of PARP1.

Involvement of Oxidative Stress and Poly(ADP-ribose) Polymerase Activation in 3-Nitropropionic Acid-induced Cytotoxicity in Human Neuroblastoma Cells

  • Nam, Eun-Joo;Lee, Young-Jae;Oh, Young-Ah;Jung, Jin-Ah;Im, Hye-In;Koh, Seong-Eun;Maeng, Sung-Ho;Joo, Wan-Seok;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.325-331
    • /
    • 2003
  • 3-Nitropropionic acid (3-NP) inhibits electron transport in mitochondria, leading to a metabolic failure. In order to elucidate the mechanism underlying this toxicity, we examined a few biochemical changes possibly involved in the process, such as metabolic inhibition, generation of reactive oxygen species (ROS), DNA strand breakage, and activation of Poly(ADP-ribose) polymerase (PARP). Exposure of SK-N-BE(2)C neuroblastoma cells to 3-NP for 48 h caused actual cell death, while inhibition of mitochondrial function was readily observed when exposed for 24 h to low concentrations (0.2${\sim}$2 mM) of 3-NP. The earliest biochemical change detected with low concentration of 3-NP was an accumulation of ROS (4 h after 3-NP exposure) followed by degradation of DNA. PARP activation by damaged DNA was also detectable, but at a later time. The accumulation of ROS and DNA strand breakage were suppressed by the addition of glutathione or N-acetyl-L-cysteine (NAC), which also partially restored mitochondrial function and cell viability. In addition, inhibition of PARP also reduced the 3-NP-induced DNA strand breakage and cytotoxicity. These results suggest that oxidative stress and activation of PARP are the major factors in 3-NP-induced cytotoxicity, and that the inhibition of these factors may be useful in protecting neuroblastoma cells from 3-NP-induced toxicity.

The Role of Kif4A in Doxorubicin-Induced Apoptosis in Breast Cancer Cells

  • Wang, Hui;Lu, Changqing;Li, Qing;Xie, Jun;Chen, Tongbing;Tan, Yan;Wu, Changping;Jiang, Jingting
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.812-818
    • /
    • 2014
  • This study was to investigate the mechanism and role of Kif4A in doxorubicin-induced apoptosis in breast cancer. Using two human breast cancer cell lines MCF-7 (with wild-type p53) and MDA-MB-231 (with mutant p53), we quantitated the expression levels of kinesin super-family protein 4A (Kif4A) and poly (ADP-ribose) Polymerase-1 (PARP-1) by Western blot after doxorubicin treatment and examined the apoptosis by flow cytometry after treatment with doxorubicin and PARP-1 inhibitor, 3-Aminobenzamide (3-ABA). Our results showed that doxorubicin treatment could induce the apoptosis of MCF-7 and MDA-MB-231 cells, the down-regulation of Kif4A and upregulation of poly(ADP-ribose) (PAR). The activity of PARP-1 or PARP-1 activation was significantly elevated by doxorubicin treatment in dose- and time-dependent manners (P < 0.05), while doxorubicin treatment only slightly elevated the level of cleaved fragments of PARP-1 (P > 0.05). We further demonstrated that overexpression of Kif4A could reduce the level of PAR and significantly increase apoptosis. The effect of doxorubicin on apoptosis was more profound in MCF-7 cells compared with MDA-MB-231 cells (P < 0.05). Taken together, our results suggest that the novel role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells is achieved by inhibiting the activity of PARP-1.