• Title/Summary/Keyword: poly(arylene ether sulfone)

Search Result 38, Processing Time 0.022 seconds

Synthesis and Characteristics of Aminated Poly(arylene ether sulfone) as Thermostable Anion Exchanger (내열성 음이온교환수지로서 Aminated Poly(arylene ether sulfone)의 합성과 물성)

  • 손원근;유현지;황택성;김동철;김상헌;송해영
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • In this study, poly(arylene ether sulfone) (PAES) having thermal stability and excellent mechanical properties was synthesized to be useful for the matrix of anion exchange resin. $1^{\circ}$-Aminated poly(arylene ether sulfone) ($1^{\circ}$-APAES) was prepared by reduction reaction after lithiation of PAES. Then $3^{\circ}$-APAES was Prepared by alkylation of the amino group of $1^{\circ}$-APAES. The structures of PAES and APAESs were confirmed with FT-IR and $^1H-NMR$ spectroscopy. Also, thermal properties of the resins were characterized by DSC and TG analysis. The introduction of amine groups in PAES resulted in the increase of glass transition temperature and decrease of initial thermal degradation temperature. The ion exchange capacities of $1^{\circ}$-APAES and $1^{\circ}$-APAES were 1.19 and 1.45 meq/g, respectively.

Nafion-Sulfonated Poly(arylene ether sulfone) Composite Membrane for Direct Methanol Fuel Cell

  • Choi Jisu;Kim II Tae;Kim Sung Chul;Hong Young Taik
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.514-520
    • /
    • 2005
  • Composite membranes of Nafion and sulfonated poly(arylene ether sulfone) were prepared. Sulfonated poly(arylene ether sulfone)s with different degrees of sulfonation were blended with Nafion to reduce the methanol crossover. The morphology, proton conductivity and methanol permeability of the resulting composite membranes were investigated by SEM, EDAX, AC impedance spectroscopy and permeability measuring instrument. The cross­sections of the composite membranes showed a phase separated morphology. The morphology and phase separation mechanism could be controlled by varying the blend ratio and the degree of sulfonation of poly(arylene ether sulfone). These complex morphologies can be applied for reducing methanol crossover. The methanol permeability and proton conductivity of the composite membranes were lower than those of Nafion 117 membrane since the development of an ionic pathway in the blend membrane was more difficult than that in Nafion itself.

Preparation and Characterization of Partially Fluorinated Poly (arylene ether sulfone)/PTFE Composite Membranes for Fuel Cell (연료전지용 부분불소계 Poly (arylene e ther sulfone)/PTFE 복합막의 제조 및 특성 분석)

  • Kim, Eun Hee;Chang, Bong-Jun;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.191-200
    • /
    • 2012
  • New composite membranes were manufactured by impregnating post-sulfonated poly(arylene ether sulfone)s containing perfluorocyclobutane (PFCB) groups into porous polytetrafluoroethylene (PTFE) films. Two kinds of post-sulfonated poly(arylene ether sulfone)s with two different monomer ratios (sulfonable biphenylene monomer : non-sulfonable sulfonyl monomer = 6 : 4, 4 : 6) were first prepared through three synthetic steps: synthesis of trifluorovinylether-terminated monomers, thermal cycloaddition polymerization and post-sulfonation using chlorosulfonic acid (CSA). The composite membranes were then prepared by adjusting the concentrations (5~20 wt%) of the resulting copolymers impregnated in the PTFE films. The water uptake, ion exchange capacity (IEC) and ion conductivity of the composite membranes were characterized and compared with their unreinforced dense membranes and Nafion. All the synthesized compounds, monomers and polymers were characterized by $^1H$-NMR, $^{19}F$-NMR and FT-IR and the composite membranes were observed with scanning electron micrographs (SEM).

Characteristics of Poly(arylene ether sulfone) Membrane for Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 Poly(arylene ether sulfone) 막의 특성)

  • Oh, Sung-June;Jeong, Jae-Hyeon;Shin, Yong-Cheol;Lee, Moo-Seok;Lee, Dong-Hoon;Chu, Cheun-Ho;Kim, Young-Sook;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.671-676
    • /
    • 2013
  • Recently, there are many efforts focused on development of Redox Flow Battery (RFB) for large energy storage system. Economical hydrocarbon membranes alternative to fluorinated membranes for RFB membrane are receiving attention. In this study, characteristics of poly(arylene ether sulfone) (PAES) were compared with expensive fluorinated membrane at VRB (Vanadium Redox Flow Battery) operation condition. Permeability of vanadium ion through membrane, ion exchange capacity (IEC), change of OCV, swelling, charge-discharge curves and energy efficiency were measured. PAES membrane showed lower permeability of vanadium ion, higher IEC and then higher energy efficiency compared with Nafion 117 membranes.

Characteristics of Poly(arylene ether sulfone) Membrane for Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지용 Poly(arylene ether sulfone) 막의 특성)

  • Jeong, Jae-Jin;Shin, Yong-Cheol;Lee, Moo-Seok;Lee, Dong-Hoon;Na, Il-Chai;Lee, Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.556-560
    • /
    • 2013
  • Recently, there are many efforts focused on development of more economical non-fluorinated membranes for use in PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, characteristics of poly(arylene ether sulfone)(PAES) were compared with fluorinated membrane at PEMFC operation condition. I-V polarization curve, hydrogen crossover, electrochemical surface area, membrane resistance and charge transfer resistance were measured. PAES membrane showed similar performance compared with fluorinated membrane at 100% relative humidity, but the performance of PAES membrane decreased largely due to low ionic conductivity at low relative humidity.

Preparation and Characterizations of poly(arylene ether sulfone)/SiO2 Composite Membranes for Polymer Electrolyte Fuel Cell (고분자 전해질 연료전지(PEFC)용 poly(arylene ether sulfone)/SiO2 복합막의 제조 및 특성분석)

  • Shin, Mun-Sik;Kim, Da-Eun;Park, Jin-Soo
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.182-188
    • /
    • 2017
  • Sulfonated poly(arylene ether sulfone) (SPAES)-3-mercaptopropyl silica gel (3MPTSG) composite membranes with improved oxidative stability were prepared for polymer electrolyte fuel cell application. It has been reported that ether part of main chain of aromatic hydrocarbon based membranes were weak to radical attack to decrease membrane durability. In this study, the hydrophilic inorganic particles were introduced by minimizing a decrease in ion conductivity and increasing an oxidative stability. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, TGA and contact angle, etc. As a result, increasing amount of the 3MPTSG resulted in decrease in proton conductivities and water uptakes at 100% R.H. but enhanced thermal and oxidative stabilities.

Enhanced Interfacial Adhesion of Carbon Fibers by Poly (arylene ether phosphine oxide) Coatings (Poly(arylene ether phosphine oxide) 코팅에 의한 탄소섬유의 계면 접착성 향상 연구)

  • 김익천;강현민;육종일;윤태호
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.55-61
    • /
    • 1999
  • Interfacial shear strength (IFSS) of poly(arylene ether phosphine oxide) (PEPO) coated carbon fibers was evaluated via microdroplet test and compared with results obtained from carbon fibers coated with poly(arylene ether sulfone) (PES), Udel$^{\circledR}$ P-1700 and Ultem$^{\circledR}$ 1000. Interfacial adhesion between thermoplastics and uncoated carbon fibers was also measured in order to understand the adheion mechanism. PEPO coated carbon fibers showed the highest IFSS, followed by PES, Udel and Ultem coated fibers. A similar trend was observed for thermoplastic/uncoated fibers. SEM analysis indicated that only PEPO coated fiber exhibited cohesie failure in the vinylester resin, while others showed failure at or near the interface of polymer coating and vinylester resin. The enhanced interfacial adhesion by PEPO coating could be attributed to the strong interaction of P = 0 moiety to the fiber as well as to the vinylester resin.

  • PDF

Synthesis and Characterization of Multi-Block Sulfonated Poly (Arylene Ether Sulfone) Polymer Membrane with Different Hydrophilic Moieties for PEMFC (서로 다른 친수성구조를 가지는 고분자전해질 연료전지용 멀티블록형 술폰산화 폴리아릴렌에테르술폰 전해질막의 합성 및 특성 분석)

  • Yuk, Jinok;Lee, Sojeong;Yang, Tae-Hyun;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • Multi-block sulfonated poly(arylene ether sulfone) (SPAES) copolymer was synthesized via nucleophilic aromatic substitution reaction for proton exchange membrane fuel cell application. After synthesizing the hydrophilic and hydrophobic precursor oligomers having different end-groups (F-terminated or OH-terminated), the effect of end group on the molecular weight was investigated. Hydrophilic oligomers with hydroquinone showed better performance as fuel cell membranes. SPAES membranes showed comparable proton conductivity to that of Nafion at $80^{\circ}C$ and above 70% RH. In particular, SPAES 9 with hydroquinone showed higher proton conductivity than SPAES 10 in the whole RH range studied. Increased local concentration of sulfonic acids within hydrophilic block might develop the hydrophilic-hydrophobic phase separation in the block copolymers.

Effect of Branching-agent Content on the Electrochemical Properties of Partially Fluorinated Poly(Arylene Ether Sulfone) Block Ionomer Membranes (부분불소계 Poly(Arylene Ether Sulfone) 블록이오노머막의 전기화학적 특성에 대한 분지체 함량의 효과)

  • Jeon, Seong-Hoon;Chang, Bong-Jun;Kang, Ho-Cheol;Kim, Jeong-Hoon;Joo, Hyeok-Jong
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • Partially fluorinated poly(arylene ether sulfone) block ionomer membranes with different branch degree for fuel cell applications were investigated. A sulfonable monomer, a non-sulfonable monomer and a trifunctional branching agent were synthesized and the sulfonable monomer was oligomerized to obtain block structures. The oligomer was then further polymerized with the non-sulfonable monomer and the branching agent. The mole ratio of oligomer : non-sulfonable monomer was fixed at 4:6 and the content of the branching agent was varied from 0 to 2 mol% (BBC-40Bx). Post-sulfonation of BBC-40Bx was carried out using chlorosulfonic acid (CSA) (SBBC-40Bx). All the synthesized compounds were characterized by $^1H$-NMR, $^{19}F$-NMR and FT-IR. It was confirmed that the ion exchange capacity (IEC), water uptake and ion conductivity of SBBC-40Bx increased with the increment of branching agent content.