• Title/Summary/Keyword: poly(amic acid)

Search Result 68, Processing Time 0.025 seconds

Preparation and Thermo-Mechanical Properties of 4-Component Polyimide Films (4성분계 폴리이미드 필름 제조 및 열적-기계적 특성)

  • Seo, Kwan-Sik;Sul, Kyung-Il;Kim, Yong-Seok;Suh, Dong-Hack;Choi, Kil-Young;Won, Jong-Chan
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.130-135
    • /
    • 2007
  • To enhance the thermo-mechanical properties of polyimide films which have potential application for the FCCL, we have synthesized the poly (amic acid) s composed of 4-components PMDA/BTDA and PDA/ODA as monomer system, u4 then they were effectively converted into 4-component polyimide films by thermal imidization process. It has been found that CTE values in the range of $100\sim200^{\circ}C$ decreased with the amount of PDA, which also caused 36% and 59% increases in tensile modulus and strength respectively. And also, peel test results on 3-layered copper clad laminate using 4-component polyimide films showed excellent adhesion strength above 1.8 kgf/cm. On the basis of obtained results it can be concluded that 4-component polyimide films may be applied for the high performance FCCL base films.

Adhesive Property of Novel Polyimides Containing Fluorine and Phosphine Oxide (Phosphine oxide와 불소를 함유하는 폴리이미드의 접착성 연구)

  • Jeong, K.U.;Myung, B.Y.;Cho, Y.J.;Choi, I.J.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.1 no.1
    • /
    • pp.38-46
    • /
    • 2000
  • A novel diamine monomer, containing fluorine and phosphine oxide, bis(3-aminophenyl) 3,5-bis(trifluoromethyl) phenyl phosphine oxide (mDA6FPPO), was prepared via Grignard reaction, and utilized to prepare polyimides with dianhydrides such as PMDA, 6FDA, BTDA or ODPA, by the conventional two-step route; preparation of poly(amic acid), followed by solution imidization. The polyimides were characterized by FT-lR, NMR, DSC and DMA, with intrinsic viscosity, and adhesive properties were also evaluated. A phosphine oxide containing monomer, bis(3-aminophenyl) phenyl phosphine oxide (mDAPPO) a nd a commercial 3,3'-diamino diphenyl sulfone (mDDS) were also used for comparison. The polyimides with mDA6FPPO exhibited high $T_g$, excellent solubility, and good adhesive properties.

  • PDF

Evaluation of h-BN Nanoflakes/Polyimide Composites for a Triboelectric Nanogenerator (육방정질화붕소 나노플레이크/폴리이미드 복합체를 이용한 마찰전기 나노발전기 평가)

  • Park, Sunyoung;Byun, Doyoung;Cho, Dae-Hyun
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.125-128
    • /
    • 2021
  • A means of enhancing the performance of triboelectric nanogenerators (TENGs) is increasing the differences in work functions between contacting materials. Hexagonal boron nitride (h-BN) exhibits excellent mechanical properties and high chemical stability as well as a high work function. As a result, engineers in the field of energy harvesting have envisioned using h-BN in the electrification layer in TENGs. For the industrial application of h-BN in TENGs, large-scale production is necessary, and h-BN is generally exfoliated and dispersed in various solvents. In this study, we evaluate the performance of a TENG with h-BN nanoflakes in the polyimide (PI) layer. To synthesize a PI composite containing h-BN nanoflakes, h-BN powders are exfoliated and dispersed in poly(amic acid) (PAA), which is the precursor of PI. Then, h-BN dispersion is spin-coated onto the PI film and cured for 2 h under 300℃. This composite material can then be used for the electrification layer in TENGs. Below the electrification layer, an aluminum foil is placed and used as an electrode. When the contact and separation processes with polyethylene terephthalate are repeated, the fabricated TENG shows a maximum power density of 190.8 W/m2. This study shows that h-BN is a promising material for enhancing the performance of the electrification layer in TENGs.

Preparation of Organophilic MMT Modified with Various Aromatic Amines and Characterization of Polyimide Nanocomposite Films (다양한 구조의 방향족 아민으로 개질된 친유기성 MMT의 제조와 이를 이용한 폴리이미드 나노복합필름의 특성)

  • Han, Seung San;Choi, Kil-Yeong;Im, Seung Soon;Kim, Yong Seok
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.177-182
    • /
    • 2006
  • In this work, we have prepared organophilic MMT having thermal stability by ion exchange reaction of various aromatic ammonium salts with MMT containing sodium ion. The organic modifiers having alkyl side chains and amine functional group were successfully synthesized by effectively introducing the surfaces of MMT via ion exchange reaction to form organophilic MMTs with a view to improve the reactivity and thermal stability. The WAXD patterns of organophilic MMT showed the more increased gallery spacing by $3.3{\AA}$ than that of the pristine MMT and also the onset of initial decomposition of organophilic MMT was $275^{\circ}C$ as determined by a thermogravimetric analysis. The polyimide (PI) nanocomposite films based on poly(amic acid) and organophilic MMT were prepared by a solution blending followed by cyclodehydration reaction. We have investigated the dispersity of organophilic MMTs in PI matrix by using WAXD and the effect of the organophilic MMT content on the mechanical properties of PI nanocomposite films was studied.

Effect of Diamine Composition on Thermo-Mechanical Properties and Moisture Absorption of Polyimide Films (디아민 변화에 따른 폴리이미드 필름의 물리적 특성과 흡습률 분석)

  • Park, Yun-Jun;Yu, Duk-Man;Choi, Jong-Ho;Ahn, Jeong-Ho;Hong, Young-Taik
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.275-280
    • /
    • 2012
  • Poly(amic acid)s were successfully synthesized from 1,4-bis(4-aminophenoxy)benzene (1,4-APB) or 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane (HFBAPP) with pyromellitic dianhydride (PMDA), 3,3'-4,4'-benzopenonetetracarboxylic dianhydride (BPDA) and $p$-phenylenediamine ($p$-PDA) and then they were effectively converted into polyimide films by thermal imidization. The chemical structure and thermo-mechanical properties of polyimide films were examined using Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analyzer (TGA), thermo-mechanical analyzer, dynamic mechanical analyzer (DMA) and universal tensile machine (UTM). The moisture absorption, thermal and mechanical properties of polyimide films decreased with increasing the amount of 1,4-APB and HFBAPP. The polyimide films using HFBAPP showed lower properties than that of 1,4-APB at the same ratio, but it displayed better thermal properties and lower moisture absorption at the similar coefficient of thermal expansion (CTE) with a copper. On the basis of our finding, it is concluded that 4-component polyimide films could be utilized for base films for flexible copper clad laminates (FCCL) of flexible printed circuit boards.

Preparation and Characterization of Polymer Coated BaTiO3 and Polyimide Nanocomposite Films (고분자로 표면 코팅된 BaTiO3와 이를 이용한 폴리이미드 나노복합필름의 제조 및 특성)

  • Han, Seung San;Han, Ji Yun;Choi, Kil-Yeong;Im, Seung Soon;Kim, Yong Seok
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.527-531
    • /
    • 2006
  • We have prepared organophilic inorganic particles and polyimide (PI) nanocomposite having excellent thermal stability and high dielectric constant that can be used for electronic application such as capacitor. We have chosen barium titanate (BT), a high dielectric constantmaterial and its surface was coated with nylon 6 to improve the affinity with PI. The FT-IR and TEM studies showed that the organophilic inorganic particle (BTN) has a polymer shell with thickness of 5 nm. We have suggested that it is possible to control the thickness of coating surface and also indicated the relationship between the ratio of inside and outside radius of BTN and the weight fraction of BT. The PI nanocomposite films based on poly(amic acid) and BTN were prepared by cyclodehydration reaction. The homogeneous dispersion of BTN in PI matrix was identified by using SEM. We have investigated the effect of BTN content on the coefficient of thermal stability, integral procedural decomposition temperature (IPDT), and dielectric constant of PI nanocomposite films.

Colorless Copolyimide Films: Thermo-mechanical Properties, Morphology, and Optical Transparency (무색 투명한 폴리이미드 공중합체 필름 : 열적-기계적 성질, 모폴로지, 및 광학 투명성)

  • Jin, Hyo-Seong;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.256-262
    • /
    • 2008
  • Copolyimides containing pendant trifluoromethyl ($CF_3$) groups were synthesized from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and bis[4-(3-aminophenoxy)phenyl]sulfone (BAPS) with various concentrations of 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane(BAPP) to poly(amic acid)(PAA), followed by thermal imidization. These copolyimides were readily soluble in N,N'-dimethylacetamide (DMAc) and could be solution-cast into a flexible and tough film. The thermomechanical properties, morphology and an optical transparency of the copolyimide films were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), scanning electron microscopy (SEM), universal tensile machine (UTM), and a UV-Vis spectrometer. The cast copolyimide films exhibited high optical transparency with a cut-off wavelength (${\lambda}_0$) of $275{\sim}319\;nm$ in UV-vis absorption and a low yellow index(YI) value of $3.65{\sim}10.37$. The thermo-mechanical properties of copolyimide films were enhanced linearly with increasing a BAPP content. In contrast, the optical transparency of the copolyimide films was found to get worse with increasing a BAPP content.

Synthesis and Characterization of 4-Component Polyimide Films with Various Diamine and Dianhydride Compositions (다양한 조성 변화에 따른 4성분계 폴리이미드 필름 제조와 물성분석)

  • Park, Yun Jun;Yu, Duk Man;Choi, Jong Ho;Ahn, Jeong-Ho;Hong, Young Taik
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.623-626
    • /
    • 2011
  • Various poly(amic acid)s were synthesized from PMDA/BPDA/p-PDA/ODA with different mole ratios and effectively converted into 4-component polyimide films by thermal imidization. The chemical structures and thermo-mechanical properties of polyimide films were examined using Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analyzer (TGA), thermo-mechanical analyzer (TMA), dynamic mechanical analyzer (DMA) and universal tensile machine (UTM). The tensile strength, modulus, and thermal properties of polyimides films increased with the amount of rigid PMDA and p-PDA, while the elongation and moisture absorption of polyimide films increased with the amount of flexible BPDA and ODA. One of 4-component polyimide films exhibited a similar coefficient of thermal expansion (CTE) value to that of copper when it was composed of PMDA : BPDA : p-PDA : ODA with the ratio of 5 : 5 : 4 : 6. Thus, this polyimide film could be useful for a base film for flexible copper clad laminates (FCCL) of flexible printed circuit boards.