• Title/Summary/Keyword: pollution reduction

Search Result 1,015, Processing Time 0.028 seconds

A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas (고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구)

  • Lee, Han Min;Yun, Jae Geun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

A Study on Reduction of Business Logistics Cost through Environmentally-Conscious Logistics Activity (친환경적인 물류 활동을 통한 기업 물류비 절감에 관한 탐색적 연구)

  • Choi, Jun-Ho;Oh, Sun-Il;Lee, Eun-Sook;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • As the industry develops, the amount of wastes is increasing in the economic system with various needs. As a result, the environmental problems are emerging as serious social issues and all the parties are required to make their best efforts. Among the issues proposed as the environmental issues, the logistics-related issues are exhaustion of the resources, global warming, environmental pollution, and acidification and so on. In order to respond to the environmental issues of the earth, the advanced countries are setting retrenched goals, reduction of the new greenhouse gases and accomplishment of retrenched goals by cooperation between the nations. Economic activities inevitably bring environmental problems and logistics is implementing those activities. The companies should perform the roles to resolve the environmental problems as the main cause of environmental pollution. Therefore, along with spreading recognition of social demand, the companies are required to establish policies regarding the environment and they should approach the issues from the perspective of resource circulation. These environment-friendly activities are emerging as the new source of competitiveness in the logistics field. Therefore, this study analyzes the effects of environment-friendly logistics activities on the reduction of logistics cost to reduce and resolve the environmental issues such as environment preservation, recycling and so on.

A Study on Potential of Aquatic Plants to Remove Indoor Air Pollutants (실내오염물질 정화를 위한 수생식물의 이용가능성에 관한 연구)

  • Park, Soyoung;Kim, Jeoung;Jang, Young-Kee;Sung, Kijune
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.5
    • /
    • pp.1-9
    • /
    • 2005
  • This study was conducted to investigate the effect of aquatic plant as a botanical air purification on the indoor air pollution by formaldehyde. Three aquatic plants such as Eichhornia crassipes, Cyperus alternifolius, Echinodorus cordifolius, were selected for this study and they were placed in the artificially contaminated chamber under laboratory condition. The results showed that all three plants could remove the formaldehyde from the contaminated air system effectively. Reduction in the formaldehyde levels by Eichhornia crassipes, which is the floating plant, might be associated with the factors of plant and water. Reduction in the formaldehyde levels by Cyperus helferi and Echinodorus cordifolius, which were emergent plant, was due to the complex effect of plant, soil medium and water. In aquatic plant system, dissolution, microbial degradation in rhizosphere, uptake through root and shoot, sorption to soil and shoot, hydrolysis are known as the main mechanisms of water soluble pollutants in the given system. The advantages of indoor air quality control system using aquatic plants can be; 1) various purifying mechanisms than foliage plants, 2) effective for decontamination of water soluble pollutants; 3) easy for maintenance; 4) diverse application potential. Therefore it was suggested from the results that indoor air control system of aquatic plants should be more effective for reduction of indoor air pollutants.

Effect of NPS Loadings from Livestock on Small Watersheds (축산농가에서 배출되는 비점오염 물질이 소규모 유역에 미치는 영향)

  • Lee, Su In;Shin, Min Hwan;Jeon, Je Hong;Park, Byeong Ky;Lee, Ji Min;Won, Chul Hee;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.27-36
    • /
    • 2015
  • The objective of this paper was to quantitatively analyze the effect of concentrated animal feeding operations (CAFO) NPS pollution on a small watershed water quality. Monitoring was conducted from March to October, 2013. Monthly flow rate and selected water quality at each monitoring site were measured during dry days. Rainy day monitoring also was conducted. Modeling was conducted to evaluate the effect of CAFO NPS pollution on the water quality at the watershed outlet. The highest and mean concentration of selected water quality indices during rainy days were higher than those in dry days in general. The highest TN concentration measured at the CAFP pollution discharge point was 237.831 mg/L. The results revealed that the CAFO NPS pollution sources could be equally blamed for the water quality degradation of the stream. However, the effect of the NPS pollution from CAFOs seemed not to be very influential to the watershed water quality at the outlet. SWAT modeling revealed that the TN load was reduced by 18.95 %, 23.39 % and 30.53 % at the watershed outlet if the TN load at the CAFO NPS pollution discharge point reduced by 20 %, 40 % and 60 %, respectively. It was thought that the natural attenuation processes played an important role. The modeling was based only on the assumption of the load reduction and not verified by the monitored data. Therefore, it was suggested that a long term monitoring studies for the evaluation of the impact of CAFO NPS pollution on the watershed water quality be conducted.

Analysis of Livestock Resources on NPS Pollution Characteristics by Rainfall Simulation (인공강우를 이용한 축산 자원화물의 비점오염 배출 특성 분석)

  • Won, Chul-Hee;Choi, Yong-Hun;Shin, Min-Hwan;Seo, Ji-Yeon;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.67-74
    • /
    • 2011
  • This research focused on the investigation of runoff and nonpoint sources (NPS) pollution characteristics from small soil box plots treated by livestock waste composts. An indoor rainfall simulation was performed over the plots for 60 minutes. Simulated rainfall intensities were 32.4, 43.2, 50.3 and 57.1 mm/hr respectively. Slope of soil box plots was $10^{\circ}$ and $20^{\circ}$, respectively. Rainfall simulation replicated 5 times and the experiment was conducted every four days five times. As the slope of soil box increased, NPS pollution loads increased. And as rainfall intensity was increased from 32.4 to 57.1 mm/hr, NPS pollution loads gradually increased, too. Discharge of NPS pollution loads was the largest in the first simulation and thereafter decreased gradually. Discharged BOD load to the total applied load from $10^{\circ}$ plots, ranged 0.2 to 0.7 %, was 8.4 to 50.0 % lower than slope $20^{\circ}$ plots. When the application rate increased twice, the increase of pollution load was between 1.7~5.7 times. Analysis of Pearson's correlation coefficient showed that organic matter content in pig compost and NPS pollution loads were correlated well. While under liquid compost application, the correlation coefficients between them were not good. It was concluded that application of livestock resources need to consider long-term weather forecast and if necessary, NPS reduction measures must be preceded in order to reduce NPS pollution discharge.

Estimation of Contribution Ratio and Community Sewerage Treatment Efficiency by using Advanced Sewage Treatment in the Basin of Hongcheon-river (홍천강 유역의 하수고도처리를 적용한 마을하수처리 효율 및 기여율 평가)

  • Park, Soo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3570-3576
    • /
    • 2013
  • This paper calculated advanced sewage treatment efficiency and reduction pollution loads to estimation contribution ratio of for community sewerage in Hongcheon-gun County. The A2/O and SBR methods showed overall high treatment efficiency of 95% and 94% respectively, and SS was 80%. On the other hand, T-N and T-P showed relatively low processing efficiency of 56% and 60% respectively, but it was observed that SS showed high 96% in the MBR method. Next, by the result of yearly water change analysis on water quality of Hongcheon River which is the discharge river of community sewerage, it was observed that water quality was greatly deteriorated by COD, T-N and T-P. However, installation and operation of community sewerage showed high pollution load reduction in general water quality item by more than 80%, and in T-N and T-P by 58% and 68% respectively. It is expected that community sewerage will greatly contribute in water quality improvement of Hongcheon River.

Evaluation for Non-Point Sources Reduction Effect by Vegetated Ridge and Silt Fence (식생밭두렁과 실트펜스를 이용한 밭 비점오염 저감효과 평가)

  • Kim, Dong-Hyeon;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.129-137
    • /
    • 2015
  • The objective of this study was to test the non-point source pollution (NPS) control by the vegetated ridge and silt fence through field monitoring. The experiment plots were established with three sizes which are 5 m width by 22 m length with 8 %, 3 % slope and 15m width by 15 m length with 6 % slope. Flumes with the floating type stage gages were installed at the outlet of each plot to monitor the runoff. For a rainfall monitoring, tipping bucket rain gage was installed within the experiment site. Water quality samples were monitored during the heavy rainfall occurred. The amount of rainfall from 4 monitored events ranged from 27.6 mm to 130 mm. The runoff reduction rate could vary depending on slope, soil, crop growth condition, rainfall amount, rainfall intensity, antecedent moisture condition, and many other factors. The runoff from vegetated ridge and silt fence treatment plots was 24.05 % and -8.28 % lower than that from control plot, respectively. The monitoring results showed that the average pollution loads reduced by vegetated ridge compared to control were BOD 36.62~53.60 %, SS 40.41~73.71 %, COD 39.34~56.41 %, DOC 49.08~53.67 %, TN 26.74~67.23 %, and TP 52.72~91.80 %; by silt fence compared to control were SS 41.73 %, COD 1.93 %, and TN 2.38 %. The paired t-test result indicated that the vegetated ridge and silt fence were statistically significant effect in SS load reduction, with a 5 % significant level. Monitored results indicated that vegetated ridge and silt fence were both effective to reduce the pollutant from the field surface runoff.

Environmental Functional Soundproof Wall (친환경 기능성 방음벽)

  • Kim, Ji Sung;Lee, Woo Mi;Kim, Il Ho;Kim, Kwang Soo
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.65-73
    • /
    • 2013
  • PURPOSES : This study is to suggest future development direction and application of environmental noise barriers as multi-functional soundproof wall. METHODS : Based on the literature review, case study and patent search, research and patent trend were investigated. Patent search was conducted by Patent searching tools, 'Focust'. RESULTS : As environmental noise barriers, Vegetative soundproof wall, photovoltaic soundproof wall, and air-pollution reduction soundproof wall were investigated. First of all, In Korea, Vegetative soundproof wall is being developed mostly as soundproof wall that has vegetation foundation inside, to meet the domestic condition with 23 patent applications. Second, Photovoltaic soundproof wall is being developed mainly with efficiency of photovoltaic system rather than soundproofing. And it is limited to one generation solar cell technology, although Solar cell technology is developing at a rapid pace. On the other hand, for reducing air-pollutant by soundproof wall, a variety of methods are being suggested (filtration, adsorption, and photocatalytic oxidation), and one of them, adsorption are applied for developing air pollution reduction soundproof wall in Korea. CONCLUSIONS: The above soundproof wall is not simple structure, but road facility applied fusion technique. Therefore, as one system, it is difficult to harmonize due to various considerations for design factor. However, if it's possible that a benefits of one system apply to another system, Synergy effect may be created. In the foreseeable future, soundproof wall may be considered as a road system using fusion technique rather than just functional facility. Therefore, substantial studies for applying multi-functional soundproof wall on the road are needed for the future.

Air Quality Improvement Scenario for China during the 13th Five-Year Plan Period

  • Tang, Qian;Lei, Yu;Chen, Xiaojun;Xue, Wenbo
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2017
  • China is suffering from severe air pollution especially fine $PM_{2.5}$ pollution. In 2015, the annual average $PM_{2.5}$ concentration of the 338 municipal cities was $50{\mu}g/m^3$, 78% cities at or above the prefectural level failed to comply with the $PM_{2.5}$ concentration standards. The $13^{th}$ Five-Year Plan for National Economic and Social Development set the goal that the annual average concentration of $PM_{2.5}$ in the municipal cities which failed to attain the ambient air quality standards shall be decreased by 18% by 2020 (CCCPC, 2016). In this study, an air pollution control scenario during the $13^{th}$ Five-Year Plan period was proposed and the $SO_2$, $NO_x$ and PM emission reductions in response to different measures in 31 provincial-level regions mainland China by 2020 were estimated. The air quality in the target year (2020) was simulated using the WRF-CMAQ model. The results showed that by 2020, the emissions of $SO_2$, $NO_x$ and primary PM in mainland China will be reduced by 4.19 million tons, 3.94 million tons and 4.41 million tons, a drop of 23%, 21% and 25% respectively compared with that in 2015, and the annual average concentration of $PM_{2.5}$ will decrease by 19%. Coal-fired power plant contributes the most pollutant emission reduction.

Study on Chemical Removal of Nitric Oxide (NO) as a Main Cause of Fine Dust (Air Pollution) and Acid Rain

  • Seo, Hyeon Jin;Jeong, Rak Hyun;Boo, Jang-Heon;Song, Jimin;Boo, Jin-Hyo
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.218-222
    • /
    • 2017
  • This study was conducted to remove $NO_x$, which is the main cause of fine dust and air pollution as well as acid rain. $NO_x$ was tested using 3% NO (diluted in He) as a simulated gas. Experiments were sequentially carried out by oxidizing NO to $NO_2$ and absorbing $NO_2$. Especially, we focused on the changes of NO oxidation according to both oxidant ($NaClO_2$) concentration change (1~10 M) and oxidant pH change (pH = 1~5) by adding HCl. In addition, we tried to suggest a method to improve $NO_2$ absorption by conducting $NO_2$ reduction reaction with reducing agent (NaOH) concentration (40~60%). It was found that NO removal efficiency increased as both concentration of oxidant and flow rate of NO gas increased, and NO decreased more effectively as the pH of hydrochloric acid added to the oxidant was lower. The $NO_2$ adsorption was also better with increasing NaOH concentration, but the NO removal efficiency was ~20% lower than that of the selective NO reduction. Indeed, this experimental method is expected to be a new method that can be applied to the capture and removal of fine dust caused by air pollution because it is a method that can easily remove NO gas by a simple device without expensive giant equipment.