• 제목/요약/키워드: pollutant source

검색결과 638건 처리시간 0.023초

하천유역에서의 기저유출 분석을 통한 총질소 하천오염부하량 연구 (A Study of Total Nitrogen Pollutant Load through Baseflow Analysis at the Watershed)

  • 최윤호;금동혁;류지철;정영훈;김용석;전지홍;김기성;임경재
    • 한국물환경학회지
    • /
    • 제31권1호
    • /
    • pp.55-66
    • /
    • 2015
  • It has been well known that it is not easy to quantify pollutant loads driven by non-point source pollution due to various factors affecting generation and transport mechanism of it. Especially pollutant loads through baseflow have been investigated by limited number of researchers. Thus in this study, the Web-based WAPLE (WHAT-Pollutant Load Estimation) system was developed and applied at study watersheds to quantify baseflow contribution of pollutant. In YbB watershed, baseflow contribution with WWTP discharge is responsible for 49.5% of total pollutant loads at the watershed. Among these, pollutant loads through baseflow (excluding any WWTP discharge) is responsible for 61.7% of it. In GbA watershed, it was found that 58.4% is contributed by baseflow with WWTP discharge 2.9% and 97.1% is by baseflow. For NbB watershed (without WWTP discharge), 52.3% of pollutant load is transported through baseflow. As shown in this study, it was found that over 50.0% of TN (Total Nitrogen) pollutant loads are contributed by non-direct runoff. Thus pollutant loads contributed by baseflow and WWTP discharge as well as direct runoff contribution should be quantified to develop and implement watershed-specific Best Management Practices during dry period.

수질오염총량관리제의 합리적인 시행을 위한 비점오염원관리 개선방안 - 비점오염원 관리지역 선정 및 비점오염물질 관리를 중심으로 - (Improvement on Management of Non-point Source Pollution for Reasonable Implementation of TMDL - Focusing on Selection of Non-point Source Pollution Management Region and Management of Non-point Source Pollutant -)

  • 이상진;김영일
    • 대한환경공학회지
    • /
    • 제36권10호
    • /
    • pp.719-723
    • /
    • 2014
  • 수질오염총량관리제의 효율적인 시행을 위해 본 연구에서는 비점오염원의 분류, 비점부하량(발생, 배출) 산정, 비점 오염원 관리지역의 선정, 비점오염물질 관리 등을 포함한 비점오염원 관리방안을 제시하고자 하였다. 무엇보다도 먼저 점오염원과 비점오염원의 정의는 학술적 법률적 관점에 기초하여 명확히 구분 관리하여야 한다. 특히, 사업활동과 사람의 활동에 의해서도 환경피해가 발생하지 않는 임야, 초지, 하천 등은 별도로 자연배경오염원으로 구분하여야 한다. 비점오염원 발생 및 배출부하량의 원단위는 유역의 실제여건에 맞도록 우선적으로 변경하여야 하며, 비점오염원 발생 및 배출부하량의 산정방법은 유역의 강수량 및 강수 지속시간을 고려하도록 수정하여야 한다. 한편, 수질오염총량관리제를 시행함에 있어 비점 오염원 관리지역은 강우시 하천의 오염물질 농도가 중권역 목표(관리목표)를 초과하거나 초과할 우려가 있는 유역을 대상으로 하며, 전체 유역 가운데 초지, 임야를 제외한 도시지역, 농경지, 그리고 대지 가운데 비점오염물질의 배출밀도가 높은 지역을 비점오염원 관리지역으로 최소화하여 선정하여야 한다. 비점오염물질저감시설은 단위면적당 비점오염물질 배출량, 오염물질 초과농도 지속시간, 처리의 실현가능성, 점오염원 대비 처리비용 효과 등을 고려하여 단위면적당 비점오염원 발생부 하량이 많은 지역과 강우시 수질농도가 중권역 목표를 초과하는 유역에 설치하여야 한다.

지리정보체계를 이용한 도시 비점원오염의 대축척 모형화 (Modeling Large Scale of Urban Nonpoint Source Pollution using a Geographic Information System)

  • 김규현
    • 대한공간정보학회지
    • /
    • 제1권1호
    • /
    • pp.171-180
    • /
    • 1993
  • 도시하수와 관련된 비점원 오염에 대한 관심은 더 나은 수질계획을 위한 새로운 도구의 발전을 이끌어 왔다. 이 논문은 도시의 수질연구를 위해 지리정보체계가 어떻게 응용되는지를 보여준다. 지리정보체계는 비점원 오염 모형화를 위한 토지이용자료를 관리하기 위해 이용되고, 또한 여러 가지 형태의 지리적 집합체내에서 오염물질을 평가하는데 이용된다. 경험적인 수질모형은 토지이용에 근본을 둔 오염물질 축적을 평가하기 위해 이용된다. 토지이용범위는 최근 사진의 판독을 통해서 구범위를 갱신함으로써 결정된다. 이러한 토지이용범위는 각각의 토지이용 다각형에 대한 오염물질 축적을 기록하는데 이용된다. 도시하수 유역과 소하수 유역의 범위를 결정하기 위해 하수지도를 수치화 시키고 해석한다. 하수구 소유역층에서 오염물질 축적을 중첩시킴으로써 주요하수의 출구에 대한 오염 축적물이 계산된다. 축적 정보를 기본으로 과다 오염 축적물의 임계지역이 어디에 위치하고 있으며, 오염 축적물을 통제하기 위한 최선의 관리기법의 효율성이 평가된다.

  • PDF

환경부 8일 유량‧수질 자료를 이용한 SS오염부하량 산정의 한계점 분석 (Limitation Analysis on Estimation of SS Pollutant Load using Korean Ministry of Environment's 8-Day Interval Flow and Water Quality data)

  • 김태구;유종원;조형익;한정호;이동준;정영훈;양재의;임경재
    • 한국물환경학회지
    • /
    • 제32권2호
    • /
    • pp.149-162
    • /
    • 2016
  • In recent years, there has been demand for precise estimations of pollutant loads on nationwide scale for the development of appropriate site specific (watershed specific) policies to reduce the negative impact of pollutant loads. River flow data and water quality data that were previously collected by various research institutes and universities for specific research purposes for a limited period was utilized in this study. However, only TMDL 8-day interval flow and water quality data were available in national scale. Three watersheds were selected and pollutant loads were calculated by two methods i.e., Numeric Integration (NI) method and Soil and Water Assessment Tool (SWAT). Subsequently, the results were compared to determine the appropriate method for monitoring nonpoint source networks nationwide. The SWAT model was calibrated and its estimated daily flow data were used in the NI method with estimated sediment data for 8-day monitoring data for three watersheds. The results indicated that the quantity of pollutant loads estimated with the NI and SWAT are different to some degrees especially during the summer season for all the three study watersheds. Thus, more frequent sampling of water quality is needed for nonpoint source pollutant estimation.

고랭지밭 밀집지역 초생대의 비점오염 저감 효율 평가 - 비점오염원 관리지역을 중심으로 (만대지구, 가아지구, 자운지구) - (Efficiency Evaluation of Vegetative Filter Strip for Non-point Source Pollutant at Dense Upland Areas - Focused on Non-point Source Management Area Mandae, Gaa, and Jaun Basins -)

  • 정연지;이동준;강현우;장원석;홍지영;임경재
    • 한국농공학회논문집
    • /
    • 제64권4호
    • /
    • pp.1-10
    • /
    • 2022
  • A vegetative filter strip (VFS) is one of the best management practices (BMPs) to reduce pollutant loads. This study aims to assess the effectiveness of VFS in dense upland field areas. The study areas are agricultural fields in the Maedae (MD), Gaa (GA), and Jaun (JU) watersheds, where severe sediment yields have occurred and the Korean government has designated them as non-point management regions. The agricultural fields were divided into three or four clusters for each watershed based on their slope, slope length, and area (e.g., MD1, MD2). To assess the sediment trapping (STE) and pesticide reduction efficiency (PRE) of VFS, the Vegetative Filter Strip Modeling System (VFSMOD) was applied with three different scenarios (SC) (SC1: VFS with rye vegetation; SC2: VFS with rye vegetation and a gentle slope in VFS range; and SC3: VFS with grass mixture). For SC1, there were relatively short slope lengths and small areas in the MD1 and GA3 clusters, and they showed higher pollutant reduction (STE>50%, PRE>25%). For SC2 and SC3, all clusters in GA and some clusters (MD1 and MD3) in MD show higher pollutant reduction (>25%), while the uplands in JU still show a lower pollutant (<25%). With correlation analysis between geographic characteristics and VFS effectiveness slope and slope length showed relative higher correlations with the pollutant efficiency than a area. The results of this study implied that slope and slope length should be considered to find suitable upland conditions for VFS installations.

과수재배지 비점오염부하량 추정회귀식 비교 검증 (Verification of Nonpoint Sources Runoff Estimation Model Equations for the Orchard Area)

  • 권헌각;이재운;이윤정;천세억
    • 한국물환경학회지
    • /
    • 제30권1호
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, regression equation was analyzed to estimate non-point source (NPS) pollutant loads in orchard area. Many factors affecting the runoff of NPS pollutant as precipitation, storm duration time, antecedent dry weather period, total runoff density, average storm intensity and average runoff intensity were used as independent variables, NPS pollutant was used as a dependent variable to estimate multiple regression equation. Based on the real measurement data from 2008 to 2012, we performed correlation analysis among the environmental variables related to the rainfall NPS pollutant runoff. Significance test was confirmed that T-P ($R^2=0.89$) and BOD ($R^2=0.79$) showed the highest similarity with the estimated regression equations according to the NPS pollutant followed by SS and T-N with good similarity ($R^2$ >0.5). In the case of regression equation to estimate the NPS pollutant loads, regression equations of multiplied independent variables by exponential function and the logarithmic function model represented optimum with the experimented value.

Tank모델에 의한 영일만 유입오염부하량의 계절변동 예측 (Seasonal Variation Estimation of Inflow Pollutant Loads of Yeong-il Bay by using Tank Model)

  • 이인철
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제6권3호
    • /
    • pp.63-71
    • /
    • 2003
  • 형산강 유역의 일별 하천유량과 오염부하량을 산정하기 위한 유역유출모형(강우-유출모형)인 Tank 모델을 구축하여 영일만으로 유입하는 오염부하량의 계절별 변동특성에 대해 검토하였다. 산정된 영일만으로 유입되는 형산강의 연평균 하천유량은 878.34×10/sup 6/㎥/year로 형산강 유역면적내 연평균 총강우량의 약 73%로 나타났다. 영일만내 유입되는 연평균 오염부하량은 각각 15.11 ton-COD/year, 23.24 ton-SS/year, 10.65 ton-TN/year, 0.54 ton-Tp/year로 산정되었다 또한 계절별 변동특성으로 하천유량이 증가하는 하계 6~7월과 춘계 10월에 유입오염부하량도 증가하는 경향을 보였다. 영일만내로 유입하는 주된 오염부하원은 형산강 하구인근에 위치한 포항시와 포항공단인 것으로 밝혀졌다. 따라서 영일만의 효율적인 수질관리를 위해서는 오염부하원으로부터의 오염부하량 저감대책수립이 요구된다.

  • PDF

고속도로 청소폐수와 노면유출수의 수질특성 비교 (Comparison of Water Characteristics of Cleaning Wastewater and Stormwater Runoff from Highways)

  • 이주광;이의상
    • 환경영향평가
    • /
    • 제16권2호
    • /
    • pp.169-176
    • /
    • 2007
  • The paved areas in nonpoint source are highly polluted landuses because of high imperviousness and pollutant mass emissions, such as sand, cereals, and dust from vehicle activities. Most of them in highways are collected by cleaning trucks or discharged to the adjacent soil and water system through the drain ditch in stormwater. Therefore, it is necessary to investigate the relationship between water concentration and total pollutant loadings from the paved areas. From the experiment, CODcr concentration of the cleaning wastewater was 17 times greater than that of the stormwater runoff. Also, concentrations of heavy metals (Cu, Fe, Zn) were 1.3 to 1.5 times higher when compared to the stormwater runoff. While total discharged loadings was insignificant in the cleaning wastewater. In conclusion, these results provide some evidence that the stormwater runoff may be managed carefully to the aspect of total pollutant loadings and the cleaning wastewater may be handled cautiously with the pollutant concentrations in highways.

장기모의를 통한 도시유역 비점오염원 처리장치 용량 산정 (Determination of Design Capacity for NPS Pollutant Treatment Facilities by Long-term Simulation in Urban Areas)

  • 주진걸;유도근;김중훈
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.841-847
    • /
    • 2011
  • In this study, a method to determine the design capacities of nonpoint source (NPS) pollutant treatment facilities in urban areas was suggested. A facility capacity to treat 80 percent of total SS discharge was estimated by 2-year rainfall - runoff - build-up and wash-off simulation at Goonja drainage district in Seoul. For wash-off simulation, four wash-off models (EMC, RC, EXP, and Joo model) were used. As the results, 80 percent of total SS discharge could be treated with only 7.7~31.4% facility capacity of peak flow. The suggested method and results will provide a guideline to determine design capacities of NPS pollutant treatment facility in urban areas.

남강댐 유역의 유출량과 오염부하량 연구 (A Study on Outflow and Pollutant Loading in Nam River Dam Basins)

  • 김종오;김옥선;김홍철
    • 한국습지학회지
    • /
    • 제2권1호
    • /
    • pp.87-94
    • /
    • 2000
  • The purpose of this study was to analysis the pollutant loading of Chin yang Reservoir according to the variation of outflow. Regression equation of the pollutant loading and outflow was represented as $L=a\;Q^b$ in which L = pollutant loading(kg/day), a and b = regression coefficient, and Q = outflow($m^3/day$). Regression coefficients ($R^2$) of Sanchung, Sinan and Changchon site was in range of 0.8376 to 0.9818. Therefore the pollutant loading was good correlated with outflow. Changchon site had minimum b value because outflow of pollutant was little compared with rainfall. The SS was the highest b value 1.621~1.7834 among water quality parameters because the pollutant loading of SS was much affected by outflow. Also, the pollutant loadings per area could be calculated and compared in case of the dry season, normal season and flood season. The pollutant loading in the normal and flood season except the dry season were higher in order of Sanchung, Sinan and Changchon site. Pollutant loading per area were higher in order of Sinan, Sanchung and Changchon site. When it compared with pollutant loading per area calculated using pollutant unit loading, T-N was much different each other.

  • PDF