• Title/Summary/Keyword: pollutant exposure

Search Result 129, Processing Time 0.028 seconds

Applied Horticultural Biotechnology for the Mitigation of Indoor Air Pollution

  • Torpy, Fraser R.;Pettit, Thomas;Irga, Peter J.
    • Journal of People, Plants, and Environment
    • /
    • v.21 no.6
    • /
    • pp.445-460
    • /
    • 2018
  • Exposure to indoor air pollution is an emerging world-wide problem, with growing evidence that it is a major cause of morbidity worldwide. Whilst most indoor air pollutants are of outdoor origin, these combine with a range of indoor sourced pollutants that may lead to high pollutant levels indoors. The pollutants of greatest concern are volatile organic compounds (VOCs) and particulate matter (PM), both of which are associated with a range of serious health problems. Whilst current buildings usually use ventilation with outdoor air to remove these pollutants, botanical systems are gaining recognition as an effective alternative. Whilst many years research has shown that traditional potted plants and their substrates are capable of removing VOCs effectively, they are inefficient at removing PM, and are limited in their pollutant removal rates by the need for pollutants to diffuse to the active pollutant removal components of these systems. Active botanical biofiltration, using green wall systems combined with mechanical fans to increase pollutant exposure to the plants and substrate, show greatly increased rates of pollutant removal for both VOCs, PM and also carbon dioxide ($CO_2$). A developing body of research indicates that these systems can outperform existing technologies for indoor air pollutant removal, although further research is required before their use will become widespread. Whilst it is known that plant species selection and substrate characteristics can affect the performance of active botanical systems, optimal characteristics are yet to be identified. Once this research has been completed, it is proposed that active botanical biofiltration will provide a cheap and low energy use alternative to mechanical ventilations systems for the maintenance of indoor environmental quality.

Estimation of Link-Based Traffic-Related Air Pollutant Emissions and the Exposure Intensity on Pedestrian Near Busy Streets (유동인구 밀집지역 인근의 도로구간별 배출량 산정 및 보행자 노출 강도 평가)

  • Lee, Sangeun;Shin, Myunghwan;Lee, Seokjoo;Hong, Dahee;Jang, Dongik;Keel, Jihoon;Jung, Taekho;Lee, Taewoo;Hong, Youdeog
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.81-89
    • /
    • 2018
  • The objective of this study is to estimate the level of exposure of traffic-related air pollutants (TRAPs) on the pedestrians in Seoul area. The road network's link-based pollutant emission was calculated by using a set of mobile source emission factor package and associated activity information. The population information, which is the number of pedestrian, was analyzed in conjunction with the link-based traffic emissions in order to quantify exposure level by selected 23 spots. We proposed the Exposure Intensity, which is defined by the amount of traffic emission and the population, to quantify the probability of exposure of pedestrian. Link-based traffic NOx and PM emissions vary by up to four times depending on the location of each spot. The Hot-spots is estimated to be around 1.8 times higher Exposure Intensity than the average of the 23 selected spots. The information of Exposure Intensity of each spot allows us to develop localized policies for air quality and health. Even in the same area, the Exposure Intensity over time also shows a large fluctuation, which gives suggestions for establishing site-specific counter-measures.

Estimating Personal Exposures to Air Pollutants in University Students Using Exposure Scenario (노출 시나리오를 이용한 대학생들의 유해 공기오염물질 노출 추정)

  • Kim, Sun-Shin;Hong, Ga-Yeon;Kim, Dong-Keon;Kim, Sung-Sam;Yang, Won-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.47-57
    • /
    • 2013
  • Studies evaluating the health effects of hazardous air pollutants assume that people's exposure to typical pollutant level is the same as specific regional pollutant level. However, depending on social and demographic factors, time-activity pattern of people can vary widely. Since most people live in indoor environments over 88% of the day, evaluating exposure to hazardous air pollutants is hard to characterize. Objective of this study was to estimate the exposure levels of university students of $NO_2$, VOCs(BTEX) and $PM_{10}$ using the scenarios with time-activity pattern and indoor concentrations. Using data from time-use survey of National Statistical Office in 2009, we investigated time-activity pattern of university students and hourly major action. A total of 1,057 university students on weekday and 640 on weekend spent their times at indoor house 13.04 hr(54.32%), other indoors 7.70 hr(32.06%), and transportation 2.36 hr(9.83%). Indoor environments in which university students spent their times were mainly house and school. Air pollutants concentrations of other indoor environments except house and school such as bar, internet cafe and billiard hall were higher than outdoors, indicating that indoor to outdoor ratios were above 1. According to three types of exposure scenarios, exposure to air pollutants could be reduced by going home after school.

Human Lung Insults due Air Pollutant -A Review for Priority Setting in the Research- (대기오염에 의한 폐장조직 손상 -연구방향의 설정을 위한 논의-)

  • 김건열;백도명
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.95-110
    • /
    • 1992
  • Much progress has been made in understanding the subcellular events of the human lung injuries after acute exposure to environmental air pollutants. Host of those events represent oxidative damages mediated by reactive oxygen species such as superoxide, hydrogen peroxide, and the hydroxy, free radical. Recently, nitric oxide (NO) was found to be endogenously produced by endothelial cells and cells of the reticulo-endothelial system as endothelialderived relaxation factor (EDRF) which is a vasoactive and neurotransmitter substance. Together with superoxide, NO can form another strong oxidant, peroxonitrite. The relative importance of exogenous sources of $N0/N0_2$ and endogenous production of NO by the EDRF producing enzymes in the oxidative stresses to the heman lung has to be elucidated. The exact events leading to chronic irreversible damage are still yet to be known. From chronic exposure to oxidant gases, progressive epithelial and interstitial damages develop. Type I epithelial cells become thicker and cover a smaller average alveolar surface area while thee II cells proliferate instead. Under acute damages, the extent of loss of the alveolar epithelial cell lining, especially type II cells appears to be a good predictor of the ensuing irreversible damage to alveolar compartment. Interstitial matrix undergo remodeling during chronic exposure with increased collagen fibers and interstitial fibroblasts. However, Inany of these changes can be reversed after cessation of exposure. Among chronic lung injuries, genetic damages and repair responses received particular attention in view of the known increased lung cancer risks from exposure to several air pollutants. Heavy metals from foundry emission, automobile traffics, and total suspended particulate, especially polycystic aromatic hydrocarbons have been positively linked with the development of lung cancer. Asbestos in another air pollutant with known risk of lung cancer and mesothelioma, but asbestos fibers are nonauthentic in most bioassays. Studies using the electron spin resonance spin trapping method show that the presence of iron in asbestos accelerates the production of the hydroxy, radical in vitro. Interactions of these reactive oxygen species with particular cellular components and disruption of cell defense mechanisms still await further studies to elucidate the carcinogenic potential of asbestos fibers of different size and chemical composition. The distribution of inhaled pollutants and the magnitude of their eventual effects on the respiratory tract are determined by pollutant-independent physical factors such as anatomy of the respiratory tract and level and pattern of breathing, as well as by pollutant-specific phyco-chemical factors such as the reactivity, solubility, and diffusivity of the foreign gas in mucus, blood and tissue. Many of these individual factors determining dose can be quantified in vitro. However, mathematical models based on these factors should be validated for its integrity by using data from intact human lungs.

  • PDF

Effective Control of Indoor Air Pollutant using VAV/BPFS (VAV/BPFS를 이용한 실내공기 오염물질의 효율적 제어)

  • 최성우
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.327-334
    • /
    • 1998
  • The oil crisis of the 1970s and the rise in oil prices motivated people to implement energy conservation strategies. Buildings were fitted with additional Insulation and reduced ventilation rates. The reduction of mechanical and natural ventilation rate led to Increases In Indoor pollutant concentrations which result- ed In Increased health risks from Indoor exposure to pollutants. The variable-air-volume /bypass fitration system/VAV/BPFS) is a variation of the conventional VAV systems, The VAV/BPFS is an electronically controlled system that provides costegectlve thermal comfort and acceptable indoor air quality Under controlled conditions In a chamber, a series experiments were performed to compare the ability of a VAV/BPFS to remove Indoor aerosol concentration and to reduce energy consumption no that ability of conventional VAV system. Results show that the VAV/BPFS Increases the effective ventilation rate and removes indoor air pollutant, and maintains acceptable indoor air Quality without sacrificing energy consumption.

  • PDF

Metal Effects of Urban Air Particulates on Cytokine Production and DNA Damage

  • Lee, Kwan-Hee;Hong, Yun-Chul
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.255-265
    • /
    • 2001
  • Epidemiologic studies have demonstrated an association between short-term exposure to particulate air pollutants and increased mortality. However the biological mechanism underlying these associations have not been fully established and also the chemical and physical characteristics of the pollutant particles are not well understood. The metal constituents of air pollutant particles and their bioavailability are considered to Play an important role as possible mediators of Particle-induced airway injury and inflammation. Sprague-Dawley rat alveolar macrophage cells (NR8383) were exposed to airborne and acid-leached particulate matter (PM). Titanium oxide and nickel subsulfide were used as negative and positive controls. Particle-induced reactive oxygen species formation in cells was detected using the fluorescent probe 2',7'-dichlorofluorescin diacetate. Expression of TNF-$\alpha$ and IL-6 were measured by enzyme-linked immunosorbent assay, and PM-induced DNA double-strand breaks were determined with $\lambda$DNA/Hind III marker. Metals associated with air pollutant particles mediated intracellular oxidant production in alveolar macrophages, and the cytotoxicity and proinflammatory cytokine production induced by PM were associated with oxidative stress. The oxidants produced by air pollutant particles also are likely to induce DNA double-strand breaks. Our findings in alveolar macrophage cells exposed to PM and acid-leached PM support the hypothesis that metal components in urban air pollutants and their bioavailabilities might play an Important role in the induction of the adverse health effects.

  • PDF

Exposure Assessments for Children in Homes and in Daycare Centers to NO2, PMs and Black Carbon

  • Lee, Jae Young;Kim, Changhyeok;Kim, Jongbum;Ryu, Sung Hee;Bae, Gwi-Nam
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.204-214
    • /
    • 2018
  • Indoor air quality was investigated in homes and daycares located in areas with heavy traffic in Seoul, South Korea from November 2013 to January 2014. Indoor and outdoor air quality measurements were collected for 48 hours in four children's homes and daycare centers. The I/O ratio (Indoor to outdoor ratio) for each major air pollutant ($NO_2$, black carbon, $PM_{10}$, and $PM_{2.5}$) was calculated, and $NO_2$ and $PM_{10}$ concentration profiles were analyzed based on indoor activity diaries recorded during the 48 hours. Most I/O ratios for $NO_2$, black carbon, $PM_{10}$, and $PM_{2.5}$ at daycare centers were less than one. At homes, I/O ratios for black carbon, $PM_{10}$, and $PM_{2.5}$ were less than one; however, most I/O ratios for $NO_2$ were greater than one due to the usage of gas stoves. The children's exposure to indoor air pollutants was calculated using a time-weighted average exposure method, and the daily intake level for each pollutant was determined.

A Proposal for a Predictive Model for the Number of Patients with Periodontitis Exposed to Particulate Matter and Atmospheric Factors Using Deep Learning

  • Septika Prismasari;Kyuseok Kim;Hye Young Mun;Jung Yun Kang
    • Journal of dental hygiene science
    • /
    • v.24 no.1
    • /
    • pp.22-28
    • /
    • 2024
  • Background: Particulate matter (PM) has been extensively observed due to its negative association with human health. Previous research revealed the possible negative effect of air pollutant exposure on oral health. However, the predictive model between air pollutant exposure and the prevalence of periodontitis has not been observed yet. Therefore, this study aims to propose a predictive model for the number of patients with periodontitis exposed to PM and atmospheric factors in South Korea using deep learning. Methods: This study is a retrospective cohort study utilizing secondary data from the Korean Statistical Information Service and the Health Insurance Review and Assessment database for air pollution and the number of patients with periodontitis, respectively. Data from 2015 to 2022 were collected and consolidated every month, organized by region. Following data matching and management, the deep neural networks (DNN) model was applied, and the mean absolute percentage error (MAPE) value was calculated to ensure the accuracy of the model. Results: As we evaluated the DNN model with MAPE, the multivariate model of air pollution including exposure to PM2.5, PM10, and other atmospheric factors predict approximately 85% of the number of patients with periodontitis. The MAPE value ranged from 12.85 to 17.10 (mean±standard deviation=14.12±1.30), indicating a commendable level of accuracy. Conclusion: In this study, the predictive model for the number of patients with periodontitis is developed based on air pollution, including exposure to PM2.5, PM10, and other atmospheric factors. Additionally, various relevant factors are incorporated into the developed predictive model to elucidate specific causal relationships. It is anticipated that future research will lead to the development of a more accurate model for predicting the number of patients with periodontitis.

Treatment, Disposal and Beneficial Use Option for Sewage Sludge (하수슬러지 처리기술 동향 및 최적화 처리방안)

  • Choe, Yong-Su
    • 수도
    • /
    • v.24 no.5 s.86
    • /
    • pp.29-44
    • /
    • 1997
  • Sewage sludge produced in Korea was 1,275,800 tons (dewatered sludge cake) per year in 1996, which is 3,495 tons per day, 0.303% of 11,526,100 tons per day of sewage treated in 79 sewage treatment plants. Sludge production has been and will be increasing in accordance with construction of new facilities for sewage treatment. Most of the sludge is currently disposed by landfill and ocean dumping, but it is becoming difficult to find suitable sites for landfill, particularly in big cities such as Seoul. In addition, rapid increase of landfill cost is anticipated in a near future. Current trend for sludge disposal in advanced countries is land application. Over the past 10 to 20 years in the United States, sludge management practices have changed significantly, moving from disposal to beneficial use. They use biosolid for utilization instead of sludge for disposal. Under the Clean Water Act of 1972, amended in 1987 by Congress, the U.S. EPA was required to develop regulations for the use and disposal of sewage sludge. The EPA assessed the potential for pollutants in sewage sludge to affect public health and the environment through a number of different routes of exposure. The Agency also assessed the potential risk to human health through contamination of drinking water sources or surface water when sludge is disposed on land. The Final Rules were signed by the EPA Administrator and were published (Federal Register, 1993). These rules state that sewage sludge shall not be applied to land if the concentration of any pollutant in the sludge exceeds the ceiling concentration. In addition, the cumulative loading rate for each pollutant shall not exceed the cumulative pollutant loading rate nor should the concentration of each pollutant in the sludge exceed the monthly average concentration for the pollutant. The annual pollutant loading rate generally applies to applications of sewage sludge on agricultural lands. The most popular beneficial use of sewage sludge is land application. The sludge has to be stabilized for appling to land. One of the stabilization process for sewage sludge is lime stabilization process. The stabilization process is consisted of the stabilizing process and the drying process. Stabilization reactor can be a drum type reactor in which a crossed mixer is equipped. The additive agents are a very reactive mixture of calcium oxide and others. The stabilized sludge is dried in sun drier or rotary kiln.

  • PDF

Acute Toxicity of Heavy Metals, Tributyltin, Ammonia and Polycyclic Aromatic Hydrocarbons to Benthic Amphipod Grandidierella japonica

  • Lee, Jung-Suk;Lee, Kyu-Tae;Park, Gyung-Soo
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • Benthic amphipod, Grandidierella japonica widely inhabits the Korean coastal waters and is developed as a standard test species for sediment toxicity tests. We exposed G. japonica to various pollutants including 4 kinds of inorganic metals (Ag, Cd, Cu and Hg), tributyltin [TBT], ammonia and 7 polycyclic aromatic hydrocarbon (PAH) compounds (acenaphthene, chrysene, fluoranthene, fluorene, naphthalene, phenanthrene and pyrene) to estimate the no observed effect concentration (NOEC) and the median lethal concentration (LC50) of each pollutant during the 96-hour acute exposure. Among all tested pollutants, TBT was most toxic to G. japonica, and Rg was most toxic among inorganic metals. The toxicity of pyrene to G. japonica was greatest among PAH compounds, followed by fluoranthene, phenanathrene, acenaphthene, fluorene and naphthalene. The toxicity of PAH compounds was closely related to their physico-chemical characteristics such as $K_ow$ and water solubility. G. japonica responded adequately to pollutant concentrations and exposure durations, and the sensitivity of G. japonica to various inorganic and organic pollutants was generally comparable to other amphipods used as standard test species in ecotoxicological studies, indicating this species can be applied in the assessment of environments polluted by various harmful substances.