감성분석은 최근 오피니언 마이닝에서 주목받고 있는 분야로써, 특정 주제, 상품, 유명인사 등에 대한 사람들의 반응을 긍정 또는 부정으로 구분하거나 점수를 이용하여 긍정 또는 부정의 강도를 분석하는데 이용되고 있다. PMI(pointwise mutual information)와 SO-PMI(semantic orientation from pointwise mutual information)는 비교적 빠르고 간편하게 극성을 판단할 수 있다는 장점이 있지만, 어휘와 기준 어휘 사이의 극성 값이 넓은 범위를 갖는다는 단점이 있다. 본 논문에서는 일상적인 언어 사용 환경에서 나타나는 어휘로부터 감성을 분석하고자 하였다. 특히 어휘의 극성 값 편차로 인해 나타날 수 있는 어려움을 보완하기 위해 NPMI(normalized pointwise mutual information)를 이용하여 어휘의 감성을 분석하였다. PMI와 NPMI를 비교 분석한 결과 어휘의 감성 강도를 나타내는 데 있어서 밀집도에서 큰 차이를 보였다.
There has been a growing concern on ontology especially in recent knowledge-based industry and defining a field-customized semantic word network is essential for building it. In this paper, a word network for ontology is established with 785 publications of Korean Society of Rural Planning(KSRP), from 1995 to 2017. Semantic relationships between words in the publications were quantitatively measured with the 'normalized pointwise mutual information' based on the information theory. Appearance and co-appearance frequencies of nouns and adjectives in phrases are analyzed based on the assumption that a 'noun phrase' represents a single 'concept'. The word network of KSRP was compared with that of $WordNet^{TM}$, a world-wide thesaurus network, for the verification. It is proved that the KSRP's word network, established in this paper, provides words' semantic relationships based on the common concepts of Korean rural planning research field. With the results, it is expecting that the established word network can present more opportunity for preparation of the fourth industrial revolution to the field of the Korean rural planning.
International Journal of Computer Science & Network Security
/
제24권6호
/
pp.1-7
/
2024
Comparing text features involves evaluating the "similarity" between texts. It is crucial to use appropriate similarity measures when comparing similarities. This study utilized various techniques to assess the similarities between newspaper articles, including deep learning and a previously proposed method: a combination of Pointwise Mutual Information (PMI) and Word Pair Matching (WPM), denoted as PMI+WPM. For performance comparison, law data from medical research in Japan were utilized as validation data in evaluating the PMI+WPM method. The distribution of similarities in text data varies depending on the evaluation technique and genre, as revealed by the comparative analysis. For newspaper data, non-deep learning methods demonstrated better similarity evaluation accuracy than deep learning methods. Additionally, evaluating similarities in law data is more challenging than in newspaper articles. Despite deep learning being the prevalent method for evaluating textual similarities, this study demonstrates that non-deep learning methods can be effective regarding Japanese-based texts.
본 연구는 국내의 인공지능과 관련된 기사들을 LDA 알고리즘에 기반한 토픽모델링 기법으로 분석하여 인공지능 관련 주요 이슈들을 도출하고 세부적으로 분석함으로써 인공지능 기술이 전(全) 산업 분야와 융합을 통해 창출할 수 있는 새로운 가치를 통찰하고, 인공지능 기술을 지식 경영에 적용할 수 있는 분야를 도출하는데 유용한 정보를 생산하고자 하였다. 본 연구에서는 '인공지능'을 검색어로 하여 추출된 11개의 중앙지와 8개의 경제지, 주요 방송사의 2016년부터 2019년까지 3,889건의 기사를 대상으로 오픈 소프트웨어인 R을 활용한 토픽모델링 기법을 사용하여 토픽 별 키워드들을 추출하였다. 각 토픽의 키워드 간 연관성을 나타내는 PMI(Pointwise Mutual Information) 측도를 높이도록 relevance 파라미터 λ를 최적화하여 토픽 별 키워드를 추출하였으며, 키워드들로부터 타당한 근거를 바탕으로 토픽명을 추론하였다. 추출된 토픽들은 인공지능 기술의 응용 분야와 사회, 경제, 산업, 문화 전반에서 일어나고 있는 변화 및 정부의 지원 정책과 비전을 폭 넓게 나타냈다.
정보검색(Information retrieval) 및 텍스트 분석을 위해 수집하는 비정형 데이터 즉, 자연어를 전처리하는 과정 중 하나인 불용어(Stopword) 제거는 모델의 품질을 높일 수 있는 쉽고, 효과적인 방법 중에 하나이다. 특히 다양한 텍스트 문서에 잠재된 주제를 추출하는 기법인 토픽모델링의 경우, 너무 오래되거나, 수집된 문서의 도메인이나 성격과 무관한 불용어의 제거로 인해, 해당 토픽 모델에서 학습되어 생성된 주제 관련 단어들의 일관성이 떨어지게 된다. 따라서 분석가가 분류된 주제를 올바르게 해석하는데 있어 많은 어려움이 따르게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해 일반적으로 사용되는 표준 불용어 대신 관련 도메인 문서로부터 추출되는 점별 상호정보량(PMI: Pointwise Mutual Information)을 이용하여 불용어를 자동으로 생성해주는 기법을 제안한다. 생성된 불용어와 표준 불용어를 통해 토픽 모델의 품질을 혼잡도(Perplexity)로써 측정한 결과, 본 논문에서 제안한 기법으로 생성한 30개의 불용어가 421개의 표준 불용어보다 더 높은 모델 성능을 보였다.
감정어 추출과 관련하여 기존 영어권 연구에서 제시된 방법의 대부분은 한국어에 직접 적용이 쉽지 않다. 한국어권 연구에서 제시된 방법 중 수작업에 의한 방법은 감정어 추출에 많은 시간이 걸린다는 문제점이 있다. 영어 시소러스 기반 한국어 감정어 추출 기술은 한국어와 영어 단어간 일대일 부정합에서부터 기인하는 정확도의 저하를 제고해야 하는 과제를 갖고 있다. 한국어 구문 분석기를 기반으로 한 연구는 출현 빈도가 낮은 감정어를 선정하지 못할 수 있는 문제점을 내포하고 있다. 본 논문에서는 한국어 상품평 중 단순한 문장에서 감정어를 자동으로 추출하는 데 있어 기존에 제안된 한국어권 연구에 상호 보완적으로 정확도를 향상시킬 수 있는 k-Structure(k=5 또는 8) 기법을 제안한다. 단순한 문장이라 함은 패턴 길이를 최대 3으로 한다. 이는 평가 대상 상품(예를 들어 '카메라')의 속성 명 f (예를 들어 카메라의 '배터리')를 기준으로 ${\pm}2$의 거리에 감정어가 포함되어 있는 문장을 의미한다. 성능 실험은 국내 주요 쇼핑몰로부터 수집한 1,868개의 상품평을 대상으로 미리 주어진 8개의 속성 명에 대한 감정어를 k-Structure를 이용하여 자동으로 추출하고 그 정확도를 평가하였다. 그 결과, k=5일 경우 평균 79.0%의 재현률, 87.0%의 정확률을 보였고, k=8일 경우 평균 92.35%의 재현률, 89.3%의 정확률을 얻을 수 있었다. 또한, 영어권 연구에서 제안된 방법 중 PMI-IR(Pointwise Mutual Information-Information Retrieval) 기법을 이용하여 실험을 수행하였다. 이 결과, 평균 55%의 재현률과 57%의 정확률을 보였다.
Almutairi, Amjad Rasmi;Al-Hagery, Muhammad Abdullah
International Journal of Computer Science & Network Security
/
제21권3호
/
pp.112-119
/
2021
Social media has become a global means of communication in people's lives. Most people are using Twitter for communication purposes and its inappropriate use, which has negative effects on people's lives. One of the widely common misuses of Twitter is cyberbullying. As the resources of dialectal Arabic are rare, so for cyberbullying most people are using dialectal Arabic. For this reason, the ultimate goal of this study is to detect and classify cyberbullying on Twitter in the Arabic context in Saudi Arabia. To help in the detection and classification of tweets, Pointwise Mutual Information (PMI) to generate a lexicon, and Support Vector Machine (SVM) algorithms are used. The evaluation is performed on both methods in terms of the F1-score. However, the F1-score after applying the PMI is 50%, while after the SVM application on the resampling data it is 82%. The analysis of the results shows that the SVM algorithm outperforms better.
Vowels are fundamental elements of spoken language, providing insights into linguistic patterns and phonological systems. This study examines vowel inventories from 913 languages in a database, analyzing their statistical distributions. It investigates unique vowels within each language category, focusing on the two major dimensions of vowel height and backness, including diphthongs. The results show that vowel phonemes without diacritics constitute 30% of all distinct vowel types but account for 64% of the total vowel phonemes, highlighting the dominance of primary vowel articulations. The most frequent vowels are /i/, followed by /u/, /a/, /o/, /e/, /ɛ/, and /ɔ/. Multidimensional scaling of vowels, with or without diacritics, reveals distinctive clusters and co-occurrence patterns, necessitating more detailed analysis. Future research should consider the establishment of linguistic criteria on vowel representation and incorporate actual speech data for comprehensive linguistic studies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.