• Title/Summary/Keyword: point-of-care testing

Search Result 75, Processing Time 0.034 seconds

Development of a nucleic acid detection method based on the CRISPR-Cas13 for point-of-care testing of bovine viral diarrhea virus-1b

  • Sungeun Hwang;Wonhee Lee;Yoonseok Lee
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.781-791
    • /
    • 2024
  • Bovine viral diarrhea (BVD) is a single-stranded, positive-sense ribonucleic acid (RNA) virus belonging to the genus Pestivirus of the Flaviviridae family. BVD frequently causes economic losses to farmers. Among bovine viral diarrhea virus (BVDV) strains, BVDV-1b is predominant and widespread in Hanwoo calves. Reverse-transcription polymerase chain reaction (RT-PCR) is an essential method for diagnosing BVDV-1b and has become the gold standard for diagnosis in the Republic of Korea. However, this diagnostic method is time-consuming and requires expensive equipment. Therefore, Clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems have been used for point-of-care (POC) testing of viruses. Developing a sensitive and specific method for POC testing of BVDV-1b would be advantageous for controlling the spread of infection. Thus, this study aimed to develop a novel nucleic acid detection method using the CRISPR-Cas13 system for POC testing of BVDV-1b. The sequence of the BVD virus was extracted from National Center for Biotechnology Information (NC_001461.1), and the 5' untranslated region, commonly used for detection, was selected. CRISPR RNA (crRNA) was designed using the Cas13 design program and optimized for the expression and purification of the LwCas13a protein. Madin Darby bovine kidney (MDBK) cells were infected with BVDV-1b, incubated, and the viral RNA was extracted. To enable POC viral detection, the compatibility of the CRISPR-Cas13 system was verified with a paper-based strip through collateral cleavage activity. Finally, a colorimetric assay was used to evaluate the detection of BVDV-1b by combining the previously obtained crRNA and Cas13a protein on a paper strip. In conclusion, the CRISPR-Cas13 system is highly sensitive, specific, and capable of nucleic acid detection, making it an optimal system for the early point-of-care testing of BVDV-1b.

Development of reverse-transcription loop-mediated isothermal amplification assays for point-of-care testing of human influenza virus subtypes H1N1 and H3N2

  • Ji-Soo Kang;Mi-Ran Seo;Yeun-Jun Chung
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.46.1-46.7
    • /
    • 2022
  • Influenza A virus (IAV) is the most widespread pathogen causing human respiratory infections. Although polymerase chain reaction (PCR)-based methods are currently the most commonly used tools for IAV detection, PCR is not ideal for point-of-care testing. In this study, we aimed to develop a more rapid and sensitive method than PCR-based tools to detect IAV using loop-mediated isothermal amplification (LAMP) technology. We designed reverse-transcriptional (RT)-LAMP primers targeting the hemagglutinin gene. RNAs from reference H1N1 and H3N2 showed specific RT-LAMP signals with the designed primers. We optimized the reaction conditions and developed universal reaction conditions for both LAMP assays. Under these conditions, the detection limit was 50 copies for both RT-LAMP assays. There was no non-specific signal to 19 non-IAV respiratory viruses, such as influenza B virus, coronaviruses, and respiratory syncytial viruses. Regarding the reaction time, a positive signal was detected within 25 min after starting the reaction. In conclusion, our RT-LAMP assay has high sensitivity and specificity for the detection of the H1 and H3 subtypes, making it suitable for point-of-care IAV testing.

Facile and Effective Detection of Vitamin C on a Paper Based Kit (종이기반 소수성 채널에서의 효율적이고 간편한 비타민 C의 검출기술 개발)

  • Hwang, Jangsun;Seo, Youngmin;Choi, Jonghoon
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.46-51
    • /
    • 2016
  • Recently paper based diagnostic kits have drawn great interest in the point-of-care testing market (POCT). The paper based detection systems provide inexpensive, rapid and safe analyses for disease markers and/or pathogens. Vitamin C (i.e., ascorbic acid) regulates body's immune system as an antioxidant agent. Humans, however, do not have enough amounts of enzymes involved in the synthesis of vitamin C that it is required to be obtained from their diets (e.g., beverages and/or supplements). Here, we have prepared a paper based kit to detect the concentration of Vitamin C presented in commercially available beverages. The evaluation provides the fast, simple and accurate results for detecting Vitamin C in the prepared paper based kit.

Development and evaluation of the multi-strip reader for point of care testing (현장검사용 멀티스트립 리더기의 개발 및 평가)

  • Kim, Jin;Jeon, Wooram;Park, Seoung Woo;Lee, Chang Youl;Lee, Da-Hyeon;Choi, In-Taek;Kim, Ju Yeon;Suh, In Bum
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.52-58
    • /
    • 2014
  • Point of care testing (POCT) is could be easily and economically performed and was widely used. In particular, the test items using immune chromatographic method has been conveniently used. But when an error occurs, we should reaffirmed the test results, but we could not reaffirm because the test line is disappeared as the time pass, and the test results are different between laboratory workers. Therefore, we developed multi-strip reader which can store images for the test results and can interpretate the test results automatically. Then we evaluated newly developed multi-strip reader for urine pregnancy test, the test results of the multi-strip reader was 100% matched with the previously results. Our newly developed multi-strip reader was convenient and economic, and will be widely used in many laboratories.

Implementation of point-of-care platforms for rapid detection of porcine circovirus type 2

  • Chiao-Hsu Ke;Mao-Yuan Du;Wang-Ju Hsieh;Chiu-Chiao Lin;James Mingjuh Ting;Ming-Tang Chiou;Chao-Nan Lin
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.28.1-28.11
    • /
    • 2024
  • Background: Porcine circovirus type 2 (PCV2) infection is ubiquitous around the world. Diagnosis of the porcine circovirus-associated disease requires clinic-pathological elements together with the quantification of viral loads. Furthermore, given pig farms in regions lacking access to sufficient laboratory equipment, developing diagnostic devices with high accuracy, accessibility, and affordability is a necessity. Objectives: This study aims to investigate two newly developed diagnostic tools that may satisfy these criteria. Methods: We collected 250 specimens, including 170 PCV2-positive and 80 PCV2-negative samples. The standard diagnosis and cycle threshold (Ct) values were determined by quantitative polymerase chain reaction (qPCR). Then, two point-of-care (POC) diagnostic platforms, convective polymerase chain reaction (cPCR, qualitative assay: positive or negative results are shown) and EZtargex (quantitative assay: Ct values are shown), were examined and analyzed. Results: The sensitivity and specificity of cPCR were 88.23% and 100%, respectively; the sensitivity and specificity of EZtargex were 87.65% and 100%, respectively. These assays also showed excellent concordance compared with the qPCR assay (κ = 0.828 for cPCR and κ = 0.820 for EZtargex). The statistical analysis showed a great diagnostic power of the EZtargex assay to discriminate between samples with different levels of positivity. Conclusions: The two point-of-care diagnostic platforms are accurate, rapid, convenient and require little training for PCV2 diagnosis. These POC platforms can discriminate viral loads to predict the clinical status of the animals. The current study provided evidence that these diagnostics were applicable with high sensitivity and specificity in the diagnosis of PCV2 infection in the field.

Rapid, Sensitive, and Specific Detection of Clostridium tetani by Loop-Mediated Isothermal Amplification Assay

  • Jiang, Dongneng;Pu, Xiaoyun;Wu, Jiehong;Li, Meng;Liu, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Tetanus is a specific infectious disease, which is often associated with catastrophic events such as earthquakes, traumas, and war wounds. The obligate anaerobe Clostridium tetani is the pathogen that causes tetanus. Once the infection of tetanus progresses to an advanced stage within the wounds of limbs, the rates of amputation and mortality increase manifold. Therefore, it is necessary to devise a rapid and sensitive point-of-care detection method for C. tetani so as to ensure an early diagnosis and clinical treatment of tetanus. In this study, we developed a detection method for C. tetani using loop-mediated isothermal amplification (LAMP) assay, wherein the C. tetani tetanus toxin gene was used as the target gene. The method was highly specific and sensitive, with a detection limit of 10 colony forming units (CFU)/ml, and allowed quantitative analysis. While detecting C. tetani in clinical samples, it was found that the LAMP results completely agreed with those of the traditional API 20A anaerobic bacteria identification test. As compared with the traditional API test and PCR assay, LAMP detection of C. tetani is simple and rapid, and the results can be identified through naked-eye observation. Therefore, it is an ideal and rapid point-of-care testing method for tetanus.

Disposable Strip-Type Biosensors for Amperometric Determination of Galactose

  • Gwon, Kihak;Lee, Seonhwa;Nam, Hakhyun;Shin, Jae Ho
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.310-317
    • /
    • 2020
  • A development of disposable strip-type galactose sensor for point-of-care testing (POCT) was studied, which was constructed using screen-printed carbon electrodes. Galactose levels were determined by the redox reaction of galactose oxidase in the presence of potassium ferricyanide as an electron transfer mediator in a small sample volume (i.e., less than 1 µL). The optimal performance of biosensor was systematically designated by varying applied potential, operating pH, mediator concentration, and amount of enzyme on the electrode. The sensor system was identified as a highly active for the galactose measurement in terms of the sensitivity (slope = 4.76 ± 0.05 nA/µM) with high sensor-to-sensor reproducibility, the linearity (R2 = 0.9915 in galactose concentration range from 0 to 400 µM), and response time (t95% = <17 s). A lower applied potential (i.e., 0.25 V vs. Ag/AgCl) allowed to minimize interference from readily oxidizable metabolites such as ascorbic acid, acetaminophen, uric acid, and acetoacetic acid. The proposed galactose sensor represents a promising system with advantage for use in POCT.

High-accuracy quantitative principle of a new compact digital PCR equipment: Lab On An Array

  • Lee, Haeun;Lee, Cherl-Joon;Kim, Dong Hee;Cho, Chun-Sung;Shin, Wonseok;Han, Kyudong
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.34.1-34.6
    • /
    • 2021
  • Digital PCR (dPCR) is the third-generation PCR that enables real-time absolute quantification without reference materials. Recently, global diagnosis companies have developed new dPCR equipment. In line with the development, the Lab On An Array (LOAA) dPCR analyzer (Optolane) was launched last year. The LOAA dPCR is a semiconductor chip-based separation PCR type equipment. The LOAA dPCR includes Micro Electro Mechanical System that can be injected by partitioning the target gene into 56 to 20,000 wells. The amount of target gene per wells is digitized to 0 or 1 as the number of well gradually increases to 20,000 wells because its principle follows Poisson distribution, which allows the LOAA dPCR to perform precise absolute quantification. LOAA determined region of interest first prior to dPCR operation. To exclude invalid wells for the quantification, the LOAA dPCR has applied various filtering methods using brightness, slope, baseline, and noise filters. As the coronavirus disease 2019 has now spread around the world, needs for diagnostic equipment of point of care testing (POCT) are increasing. The LOAA dPCR is expected to be suitable for POCT diagnosis due to its compact size and high accuracy. Here, we describe the quantitative principle of the LOAA dPCR and suggest that it can be applied to various fields.