• Title/Summary/Keyword: point source model

Search Result 587, Processing Time 0.033 seconds

Quantitative Assessment of Nonpoint Source Load in Nakdong River Basin

  • Kwon, Heon-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Cheon, Se-Uk
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.7-23
    • /
    • 2014
  • This study estimates unit for the nonpoint source(NPS), classified according to the existing Level-1(large scale) land cover map, by monitoring the measurement results from each Level-2(medium scale) land cover map, and verifies the applicability by comparison with previously calculated units using the Level-1 land cover map. The NPS pollutant loading for a basin is evaluated by applying the NPS pollutant unit to Dongcheon basin using the Level-2 land cover map. In addition, the BASINS/HSPF(Better Assessment Science Integrating point & Non-point Sources/Hydrological Simulation Program-Fortran) model is used to evaluate the reliability of the NPS pollutant loading computation by comparing the loading during precipitation in the Dongcheon basin. The NPS pollutant unit for the Level-2 land cover map is computed based on precipitation measured by the Sangju observatory in the Nakdong River basin. Finally, the feasibility of the NPS pollutant loading computation using a BASINS/HSPF model is evaluated by comparing and analyzing the NPS pollutant loading when estimated unit using the Level-2 land cover map and simulated using the BASINS/HSPF models.

Watershed Modeling Application for Receiving Water Quality Management in Nakdong River Basin (낙동강 유역의 수질관리를 위한 유역모델링 적용 연구)

  • Jang, Jae-Ho;Ahn, Jong-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.409-417
    • /
    • 2012
  • SWAT model was applied for the Nakdong River Basin to characterize water quality variability and assess the feasibility of using the load duration curve to water quality management. The basin was divided into 67 sub-basins considering various watershed environment, and rainfall runoff and pollutant loading were simulated based on 6 year measurements of meteo-hydrological data, discharge data of treatment plants, and water quality data (SS, T-N and T-P). The results demonstrate that non-point source loads during wet season increase by 80 ~ 95% of total loads. Although the rate of water flow governs the amount of SS that is transported to the main streams, nutrient concentrations are highly elevated during dry season by being concentrated. This phenomenon is more pronounced in the lower basin, receiving large amounts of urban point source discharges such as treated sewages. Also, the load duration curves (LDC) demonstrate dominant source problems based on the load exceedances, showing that SS concentrations are associated with the rainy season and nutrients, such as T-P, may be more concentrated at low flow and more diluted at higher flow. Overall, the LDC method could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

Calculation of Pollutant Loads and Simulation of Water Quality in Juam Lake Watershed using GIS (GIS를 이용한 주암호 유역의 오염부하량 산정 및 수질모의)

  • Kim, Chul;Kim, Souk-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.3
    • /
    • pp.87-98
    • /
    • 2002
  • Point & nonpoint source pollutant loads were calculated in Juam lake watershed using GIS, and water quality was simulated using water quality model. Point source pollutant loads were estimated using the unit pollutant loads presented by the Ministry of Environment(MOE, 1998). Nonpoint source pollutant loads were estimated using the value of the direct runoff multiplied by expected mean concentration. The direct runoff was calculated using SCS curve number method. Water quality simulation was conducted using WASP model(2001) developed by U.S. EPA. In order to apply the model, Juam lake watershed was divided into 44 subbasins according to slope, elevation, soil type, landuse and precipitation. Then the model was applied to one subbasin. Simulation results were compared to observed values and the result should good agreement with each other.

  • PDF

Simulation of Ground Motions from Gyeongju Earthquake using Point Source Model (점지진원 모델을 이용한 경주 지진으로 인한 지반운동 생성)

  • Ha, Seong Jin;Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.537-543
    • /
    • 2016
  • In low to moderate seismic regions, there are limited earthquake ground motion data recorded from past earthquakes. In this regard, the Gyeongju earthquake (M=5.8)occurred on September 12, 2016 produces valuable information on ground motions. Ground motions were recorded at various recording stations located widely in Korean peninsula. Without actual recoded ground motions, it is impossible to make a ground motion prediction model. In this study, a point source model is constructed to accurately simulate ground motions recorded at different stations located on different soil conditions during the Gyeongju earthquake. Using the model, ground motions are generated at all grid locations of Korean peninsula. Each grid size has $0.1^{\circ}(latitude){\times}0.1^{\circ}(longitude)$. Then a contour hazard map is constructed using the peak ground acceleration of the simulated ground motions.

Calculation of Pollutant Loadings from Stream Watershed Using Digital Elevation Model and Pollutant Load Unit Factors (발생부하원단위와 수치표고모형을 이용한 하천유역 오염부하량 산정)

  • Yang, Hong-Mo;Kim, Hyuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.22-31
    • /
    • 2001
  • The purpose of this study is to compare calculated pollutant loadings using pollutant load unit factors and vector type coverage, and expected mean concentration(EMC) and raster type of digital elevation model(DEM). This study is also focusing on comparison of the advantages and the disadvantages of the two methods, and seeking for a method of calculation of pollutant loadings using DEM. Estimation of pollutant inputs using pollutant load unit factors has limitations in identifying seasonal variations of pollutant loadings. Seasonal changes of runoffs should be considered in the calculation of pollutant loadings from catchments into reservoirs. Evaluation of pollutant inputs using runoff-coefficient and EMC can overcome these drawbacks. Proper EMC and runoff-coefficient values for the Koeup stream catchments of the Koheung estuarine lake were drawn from review of related papers. Arc/Info was employed to establish database of spatial and attribute data of point and non-point pollutant sources and characteristics of the catchments. ArcView was used to calculate point and non-point pollutant loadings. Pollutant loads estimated with either unit factors-coverages, i.e., pollutant load unit factors and vector coverages f point sources and land use, or EMC and digital elevation mode(DEM) were compared with stream monitoring loads. We have found that some differences were shown between monitoring results and estimated loads by Unit Factors-Coverage and EMC-DEM. Monthly variations of pollutant loads evaluated with EMC-DEM were similar to those with monitoring result. The method using EMC-DEM can calculate accumulated flows and pollutant loads and can be utilized to identify stream networks. A future research on correcting the difference between vector type stream using flow direction grid and digitalizing vector type should be conducted in order to obtain more exact calculation of pollutant loadings.

  • PDF

Comparative Study of Coupling Factors for Assessment of Low-Frequency Magnetic Field Exposure

  • Shim, Jae-Hoon;Choi, Min-Soo;Jung, Kyu-Jin;Kwon, Jong-Hwa;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.516-523
    • /
    • 2016
  • In this paper, coupling factors are calculated based on numerical analysis in order to assess various non-uniform low-frequency magnetic field exposure situations. Two types of non-uniform magnetic field sources are considered; circular coil and parallel wires with balanced currents. For each magnetic field source, source current values are determined so that reference magnetic field magnitude can be measured at the specified point on the human model. Various exposure situations are investigated by changing parameters such as the distance between source and human model, radius of circular coil, and the gap between parallel wires. For equivalent human models, prolate spheroid model and simplified human model from IEC 62311 standard are used. The calculated coupling factor values are compared with those obtained by 2D uniform disk human model, and the dependence of coupling factor on the choice of equivalent human model is analyzed.

Grid Based Nonpoint Source Pollution Load Modelling

  • Niaraki, Abolghasem Sadeghi;Park, Jae-Min;Kim, Kye-Hyun;Lee, Chul-Yong
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.246-251
    • /
    • 2007
  • The purpose of this study is to develop a grid based model for calculating the critical nonpoint source (NPS) pollution load (BOD, TN, TP) in Nak-dong area in South Korea. In the last two decades, NPS pollution has become a topic for research that resulted in the development of numerous modeling techniques. Watershed researchers need to be able to emphasis on the characterization of water quality, including NPS pollution loads estimates. Geographic Information System (GIS) has been designed for the assessment of NPS pollution in a watershed. It uses different data such as DEM, precipitation, stream network, discharge, and land use data sets and utilizes a grid representation of a watershed for the approximation of average annual pollution loads and concentrations. The difficulty in traditional NPS modeling is the problem of identifying sources and quantifying the loads. This research is intended to investigate the correlation of NPS pollution concentrations with land uses in a watershed by calculating Expected Mean Concentrations (EMC). This work was accomplished using a grid based modelling technique that encompasses three stages. The first step includes estimating runoff grid by means of the precipitation grid and runoff coefficient. The second step is deriving the gird based model for calculating NPS pollution loads. The last step is validating the gird based model with traditional pollution loads calculation by applying statistical t-test method. The results on real data, illustrate the merits of the grid based modelling approach. Therefore, this model investigates a method of estimating and simulating point loads along with the spatially distributed NPS pollution loads. The pollutant concentration from local runoff is supposed to be directly related to land use in the region and is not considered to vary from event to event or within areas of similar land uses. By consideration of this point, it is anticipated that a single mean estimated pollutant concentration is assigned to all land uses rather than taking into account unique concentrations for different soil types, crops, and so on.

  • PDF

Analysis of the Effects on Soil Erosion and Suspended Sediment Reduction by Alpine Unauthorized and Illegal Agricultural Fields Restoration Scenarios (고랭지 임의·불법 경작지 복구 시나리오에 따른 토양유실 및 부유사량 저감 효과 분석)

  • Lee, Seoro;Lee, Gwanjae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.53-62
    • /
    • 2024
  • This study assessed the efficiency of reducing soil erosion and suspended sediment through the restoration of alpine unauthorized and illegally cultivated fields, using the SWAT (Soil and Water Assessment Tool) model in the Mandae District. The results showed that in Scenario 5, which involved restoring unauthorized and illegal fields within forests, along rivers (banks), and in ditch areas were restored to their original land categories, achieved the highest efficiency in reducing average annual soil erosion and suspended sediment, with reductions of 8.1% and 4.5%, respectively. In particular, it was confirmed that the restoration of unauthorized and illegal fields within forested areas has a significant impact. This demonstrated that the restoration of unauthorized and illegal agricultural fields can substantially reduce the soil erosion and suspended sediment attributable to non-point source pollution. Our findings highlight the importance of managing these unauthorized and illegal agricultural activities in developing sustainable strategies within non-point source pollution management areas. This study is expected to provide important basic data to effectively establish water quality improvement strategies in the region of non-point source pollution management.

Demonstration of the Effectiveness of Monte Carlo-Based Data Sets with the Simplified Approach for Shielding Design of a Laboratory with the Therapeutic Level Proton Beam

  • Lai, Bo-Lun;Chang, Szu-Li;Sheu, Rong-Jiun
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Background: There are several proton therapy facilities in operation or planned in Taiwan, and these facilities are anticipated to not only treat cancer but also provide beam services to the industry or academia. The simplified approach based on the Monte Carlo-based data sets (source terms and attenuation lengths) with the point-source line-of-sight approximation is friendly in the design stage of the proton therapy facilities because it is intuitive and easy to use. The purpose of this study is to expand the Monte Carlo-based data sets to allow the simplified approach to cover the application of proton beams more widely. Materials and Methods: In this work, the MCNP6 Monte Carlo code was used in three simulations to achieve the purpose, including the neutron yield calculation, Monte Carlo-based data sets generation, and dose assessment in simple cases to demonstrate the effectiveness of the generated data sets. Results and Discussion: The consistent comparison of the simplified approach and Monte Carlo simulation results show the effectiveness and advantage of applying the data set to a quick shielding design and conservative dose assessment for proton therapy facilities. Conclusion: This study has expanded the existing Monte Carlo-based data set to allow the simplified approach method to be used for dose assessment or shielding design for beam services in proton therapy facilities. It should be noted that the default model of the MCNP6 is no longer the Bertini model but the CEM (cascade-exciton model), therefore, the results of the simplified approach will be more conservative when it was used to do the double confirmation of the final shielding design.

Assessing the Action Plans in the Control Area(Soyang Reservoir) of Non-point Source Pollution (비점오염원 관리지역(소양호) 목표수질 달성도 평가)

  • Choi, Jaewan;Kang, Min-Ji;Ryu, Jichul;Kim, Dong-Il;Lim, Kyung-Jae;Shin, Dong-Seok
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.839-852
    • /
    • 2014
  • The Ministry of Environment (MOE) has made more effort in managing point source pollution rather than in nonpoint source pollution in order to improve water quality of the four major rivers. However, it would be difficult to meet water quality targets solely by managing the point source pollution. As a result of the comprehensive measures established in 2004 under the leadership of the Prime Minister's Office, a variety of policies such as the designation of control areas to manage nonpoint source pollution are now in place. Various action plans to manage nonpoint source pollution have been implemented in the Soyang-dam watershed as one of the control areas designed in 2007. However, there are no tools to comprehensively assess the effectiveness of the action plans. Therefore, this study would assess the action plans (especially, BMPs) designed to manage Soyang-dam watershed with the WinHSPF and the CE-QUAL-W2. To this end, we simulated the rainfall-runoff and the water quality (SS) of the watershed and the reservoir after conducting model calibration and the model validation. As the results of the calibration for the WinHSPF, the determination coefficient ($R^2$) for the flow (Q, $m^3/s$) was 0.87 and the $R^2$ for the SS was 0.78. As the results of the validation, the former was 0.78 and the latter was 0.67. The results seem to be acceptable. Similarly, the calibration results of the CE-QUAL-W2 showed that the RMSE for the water level was 1.08 and the RMSE for the SS was 1.11. The validation results(RMSE) of the water level was 1.86 and the SS was 1.86. Based on the daily simulation results, the water quality target (turbidity 50 NTU) was not exceeded for 2009~2011, as results of maximum turbidity in '09, '10, and '11 were 3.1, 2.5, 5.6 NTU, respectively. The maximum turbidity in the years with the maximum, the minimum, and the average of yearly precipitation (1982~2011) were 15.5, 7.8, and 9.0, respectively, and therefore the water quality target was satisfied. It was discharged high turbidity at Inbuk, Gaa, Naerin, Gwidun, Woogak, Jeongja watershed resulting of the maximum turbidity by sub-basins in 3years(2009~2011). The results indicated that the water quality target for the nonpoint source pollution management should be changed and management area should be adjusted and reduced.