• Title/Summary/Keyword: point source model

Search Result 587, Processing Time 0.032 seconds

Characterization of Runoff Properties of Non-point Pollutant at a Small Rural Area considering Landuse Types (토지이용 특성을 고려한 소규모 농촌유역의 비점오염물질 유출특성 해석)

  • Bae, Sang-ho;Kim, Weon-jae;Yoon, Young H.;Lim, Hyun-man;Kim, Eun-ju;Park, Jae-roh
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.654-663
    • /
    • 2010
  • Attention has increasingly focused on the pollutant load discharged from rural area since the enforcement of total maximum daily loads (TMDLs) in korea. As one of the methods to control the inflow of pollutant load during wet weather events, local governments are attempting to apply non-point source control facility. To design those facilities appropriately, it is essential to understand the runoff characteristics of pollutants such as TSS, $BOD_5$, $COD_{Cr}$, TP and TN. In the paper, the quantitative analyses for pollutant runoff characteristics were examined in a small rural watershed with the area of about 53 hectares. For a dry weather day and wet weather events, variation patterns of dry weather flow and runoff characteristics of wet weather flows were monitored and investigated. The runoff model using XP-SWMM reflecting the landuse types of the watershed in detail was simulated to perform the sensitivity analyses for several factors influencing on their hydrograph and pollutographs. As a result, for the case of medium and small rainfall events (i. e. total rainfall of 35.8 and 17.5 mm), the impervious area including green house, roof and road which covers relatively low portion of total area (i. e. 16%) caused substantial first flush and the majority of total runoff load. Therefore, it has been concluded that the runoff characteristics of each pollutant and distribution of impervious area should be considered for the establishment of the control strategy of non-point pollutant runoff at a rural area.

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

Pulse pileup correction method for gamma-ray spectroscopy in high radiation fields

  • Lee, Minju;Lee, Daehee;Ko, Eunbie;Park, Kyeongjin;Kim, Junhyuk;Ko, Kilyoung;Sharma, Manish;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1029-1035
    • /
    • 2020
  • The detector suffers from pulse pileup by overlapping of the signals when it was used in high radiation fields. The pulse pileup deteriorates the energy spectrum and causes count losses due to random co-incidences, which might not resolve within the resolving time of the detection system. In this study, it is aimed to propose a new pulse pileup correction method. The proposed method is to correct the start point of the pileup pulse. The parameters are obtained from the fitted exponential curve using the peak point of the previous pulse and the start point of the pileup pulse. The amplitude at the corrected start point of the pileup pulse can be estimated by the peak time of the pileup pulse. The system is composed of a NaI (Tl) scintillation crystal, a photomultiplier tube, and an oscilloscope. A 61 μCi 137Cs check-source was placed at a distance of 3 cm, 5 cm, and 10 cm, respectively. The gamma energy spectra for the radioisotope of 137Cs were obtained to verify the proposed method. As a result, the correction of the pulse pileup through the proposed method shows a remarkable improvement of FWHM at 662 keV by 29, 39, and 7%, respectively.

National Agenda Service Model Development Research of Policy Information Portal of National Sejong Library (국립세종도서관 정책정보포털 국정과제 서비스 모형개발 연구)

  • Younghee, Noh;Inho, Chang;Hyojung, Sim
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.4
    • /
    • pp.73-92
    • /
    • 2022
  • This study intends to design a model that can effectively service policy data necessary for the implementation of new national agenda in order to provide high-quality policy information services that go beyond those of the existing Policy Information Portal (POINT) of National Sejong Library. To this end, it was determined that providing an integrated search environment, in lieu of data search through individual access, was necessary. Subsequently, four possible models for a national agenda service model were presented. First, designing a computerized system for both interface and electronic information source aspects was proposed for the national agenda service system operation. Second, designing the Linked Open Data system and the time-series service system for national policy information, providing the translation service of overseas original data, and securing the researcher's desired data were presented for the national agenda service information source operation. Third, strengthening public relations for policy users, building and promoting the site brand, operating SNS channels, and reinforcing the activation of auxiliary materials and the accessibility of external services were proposed for public relations of national agenda service. Fourth, expanding the information network with Open API, cloud service, and overseas libraries was proposed for collaborating and cooperating with the agenda service.

Evaluation of SWAT model and HSPF model predictions for water resource management in the Okjeong Lake watershed of the Seomjin River (섬진강 옥정호 유역의 수자원 관리를 위한 SWAT 모델과 HSPF 모델의 비교 분석)

  • Lee, Eojin;Lee, Seungmoon;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.10
    • /
    • pp.769-783
    • /
    • 2024
  • This study conducted a comparative analysis by simultaneously applying the widely used SWAT (Soil and Water Assessment Tool) and HSPF (Hydrological Simulation Program-Fortran) models to estimate the inflow of discharge, total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) into Okjeong Lake, located in the upper reaches of the Seomjin River. Data provided by the Ministry of Environment from 2012 to 2021 were used as input and calibration data for both models, and performance evaluation metrics such as the coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), and Percent Bias (PBIAS) were utilized to assess model accuracy. For flow calibration, the SWAT model showed slightly better performance, with an average R2 of 0.82 and NSE of 0.72 across all stations, compared to the HSPF model's R2 of 0.76 and NSE of 0.67. However, for water quality calibration, the SWAT model had an average PBIAS of 13.2% for TN, 19.1% for TP, and 31.5% for TSS, while the HSPF model had an average PBIAS of 17.2% for TN, 23.2% for TP, and 25.9% for TSS. These results suggest that both models are limited in their ability to accurately simulate real world water quality. Based on the predicted results of the two models, this study analyzed the causes of the errors and provided useful examples for selecting an appropriate watershed model for water quality management of Okjeong Lake, including non-point source pollution load reduction.

A Study on Land Acquisition Priority for Establishing Riparian Buffer Zones in Korea (수변녹지 조성을 위한 토지매수 우선순위 산정 방안 연구)

  • Hong, Jin-Pyo;Lee, Jae-Won;Choi, Ok-Hyun;Son, Ju-Dong;Cho, Dong-Gil;Ahn, Tong-Mahn
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.4
    • /
    • pp.29-41
    • /
    • 2014
  • The Korean government has purchased land properties alongside any significant water bodies before setting up the buffers to secure water qualities. Since the annual budgets are limited, however, there has always been the issue of which land parcels ought to be given the priority. Therefore, this study aims to develop efficient mechanism for land acquisition priorities in stream corridors that would ultimately be vegetated for riparian buffer zones. The criteria of land acquisition priority were driven through literary review along with experts' advice. The relative weights of their value and priorities for each criterion were computed using the Analytical Hierarchy Process(AHP) method. Major findings of the study are as follows: 1. The decision-making structural model for land acquisition priority focuses mainly on the reduction of non-point source pollutants(NSPs). This fact is highly associated with natural and physical conditions and land use types of surrounding areas. The criteria were classified into two categories-NSPs runoff areas and potential NSPs runoff areas. 2. Land acquisition priority weights derived for NSPs runoff areas and potential NSPs runoff areas were 0.862 and 0.138, respectively. This implicates that much higher priority should be given to the land parcels with NSPs runoff areas. 3. Weights and priorities of sub-criteria suggested from this study include: proximity to the streams(0.460), land cover(0.189), soil permeability(0.117), topographical slope(0.096), proximity to the roads(0.058), land-use types(0.036), visibility to the streams(0.032), and the land price(0.012). This order of importance suggests, as one can expect, that it is better to purchase land parcels that are adjacent to the streams. 4. A standard scoring system including the criteria and weights for land acquisition priority was developed which would likely to allow expedited decision making and easy quantification for priority evaluation due to the utilization of measurable spatial data. Further studies focusing on both point and non-point pollutants and GIS-based spatial analysis and mapping of land acquisition priority are needed.

Analysis of Effect of Ditch Restoration on Soil Loss Reduction in Highland Agricultural Fields (고랭지밭의 구거복원에 따른 토양유실저감 효과분석)

  • Sung, Yunsoo;Kim, Dong Jin;Lee, Suin;Ryu, Jichul;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki Sung
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.385-391
    • /
    • 2020
  • Soil loss is a serious problem frequently caused by local torrential rainfalls due to climate change. In particular, soil loss is occurring in agricultural areas rather than urban areas, and many pollutants are introduced into rivers, causing environmental problems. To reduce soil loss, the Ministry of Environment has designated and managed non-point source management areas. The Jaun-district in Hongcheon-gun, which was designed as a non-point pollution source management area in Gangwon-do, is located in the upper stream of Soyang Lake. Most of the agricultural fields are composed of highland agriculture fields. The highland agricultural fields in the Jaun-district are also composed of large-scale farming areas, and the ditches located near the agricultural fields have been illegally used for farmland. Therefore, the local government in Hongcheon-gun is conducting a project to restore the ditches occupied by agricultural fields. However, an analysis of the amount of soil loss that can be reduced by the restoration of the ditches has not been conducted yet. Thus, the purpose of this study was to analyze the effect of reducing the soil loss from the restoration of the ditches used as agricultural fields in the Jaun-district. The SATEEC L Module was used to analyze the reduction in soil loss by ditch restoration. The SATEEC L Module was constructed to estimate the LS factor using Moore and Burch's method after calculating the slope length using the digital elevation model and the maximum allowable slope length. The LS factor and the USLE formula were used to estimate the amount of soil loss that could be reduced by ditch restoration. The analysis showed that the ditch restoration could reduce about 16.6% of the soil loss in the Jaun-district. The results of this study will contribute to the study of methods to reduce soil loss in non-point pollution management areas.

The Study on the Non-Point Pollutants Reduction Using Friendly Bank Protection Anaerobic/Aerobic Contact Filtration Zone (혐기/호기 접촉여과대를 이용한 자연형 하천호안공법의 비점오염 저감 특성 연구)

  • Chang, HyungJoon;Kim, SungDuk
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • It is an urgent issue to manage and reduce non-point pollution sources for improving the water quality of stream and lakes in rural areas. In this study, in order to reduce non-point pollution sources in rural area, Gabion mattresses was proposed to provide protection of riverbanks with anaerobic and aerobic area. The utilization of this was assessed by lab scale model test and pilot plant test. After filling the inside of the gabion mattresses with aggregate, the filtration zone under anaerobic and aerobic conditions was formed to treat the contaminants. In addition, vegetation was deposited on the surfae of the gabion to prevent the inflow of soil and to promote purification by the plant. COD and nitrogen content (T-N, $NH_4{^+}$, -N, $NO_3{^-}N$) were monitored in model and field tests. The lab scale model test showed removal efficiency of 17% of TCOD, 35% of SCOD, 14% of TN, 62% of $NH_4{^+}$, -N, and 33% of $NO_3{^-}$ N. Also, pilot plant test showed removal efficiency of 24% of TCOD, 29% of SCOD, 47% of TN, 50% of $NH_4{^+}-N$, 33% of $NO_3{^-}$, N and 29% of TP.

Evaluation of SharpIR Reconstruction Method in PET/CT (PET/CT 검사에서 SharpIR 재구성 방법의 평가)

  • Kim, Jung-Yul;Kang, Chun-Koo;Park, Hoon-Hee;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2012
  • Purpose : In conventional PET image reconstruction, iterative reconstruction methods such as OSEM (Ordered Subsets Expectation Maximization) have now generally replaced traditional analytic methods such as filtered back-projection. This includes improvements in components of the system model geometry, fully 3D scatter and low noise randoms estimates. SharpIR algorithm is to improve PET image contrast to noise by incorporating information about the PET detector response into the 3D iterative reconstruction algorithm. The aim of this study is evaluation of SharpIR reconstruction method in PET/CT. Materials and Methods: For the measurement of detector response for the spatial resolution, a capillary tube was filled with FDG and scanned at varying distances from the iso-center (5, 10, 15, 20 cm). To measure image quality for contrast recovery, the NEMA IEC body phantom (Data Spectrum Corporation, Hillsborough, NC) with diameters of 1, 13, 17 and 22 for simulating hot and 28 and 37 mm for simulating cold lesions. A solution of 5.4 kBq/mL of $^{18}F$-FDG in water was used as a radioactive background obtaining a lesion of background ratio of 4.0. Images were reconstructed with VUE point HD and VUE point HD using SharpIR reconstruction algorithm. For the clinical evaluation, a whole body FDG scan acquired and to demonstrate contrast recovery, ROIs were drawn on a metabolic hot spot and also on a uniform region of the liver. Images were reconstructed with function of varying iteration number (1~10). Results: The result of increases axial distance from iso-center, full width at half maximum (FWHM) is also increasing in VUE point HD reconstruction image. Even showed an increasing distances constant FWHM. VUE point HD with SharpIR than VUE point HD showed improves contrast recovery in phantom and clinical study. Conclusion: By incorporating more information about the detector system response, the SharpIR algorithm improves the accuracy of underlying model used in VUE point HD. SharpIR algorithm improve spatial resolution for a line source in air, and improves contrast recovery at equivalent noise levels in phantoms and clinical studies. Therefore, SharpIR algorithm can be applied as through a longitudinal study will be useful in clinical.

  • PDF

Analysis of Effects on SWAT Estimation of Warm-Up Period

  • Lee, Ji-Won;Moon, Jong-Pil;Woo, Won-Hee;Kum, Dong-Hyuk;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.260-260
    • /
    • 2011
  • SWAT is semi-distributed and continuous-time distributed simulation watershed model, which can simulate point and nonpoint source pollutants as well as hydrology and water quality. It was developed to predict the effects of alternative management decisions on water, sediment, and chemical yields with reasonable accuracy. It is able to predict and manage hydrology, sediments, nutrients, and pesticides with Best Management Practices (BMPs) in a watershed. SWAT model also has potential for use in ungauged basins to predict streamflow and baseflow from saturated source area in watersheds. According to various cultivation practices and climate change, SWAT model is available to analyze relative change in hydrology and water quality. In order to establish optimum management of water quality, both monitering and modeling have been conducted actively using SWAT model. As SWAT model is computer program to simulate a lot of natural phenomena, it has limitation to predict and reflect them with on hundred percent accuracy. Thus, it is possible to analyze the effect of BMPs in the watershed where users want to simulate hydrology and water quality only if model accuracy and applicability are assessed first of all and the result of it is well for the study watershed. For assessment of SWAT applicability, most researchers have used $R^2$ and Nash and Sutcliffe Efficiency (NSE). $R^2$ and NSE are likely to show different results according to a warm up period and sometimes its results are very different. There have been hardly any studies of whether warm up period can affect simulation results in SWAT model. In this study, how warm up period has a effect on SWAT results was analyzed and a appropriate warm up period was suggested. Lots of SWAT results were compared after using measured data of Soyanggang-dam watershed and applying various warm up period (0 ~ 10 year(s)). As a result of this study, when there was no warm up period, $R^2$ and NSE were 0.645, 0.602 respectively, when warm up period was 2 years, $R^2$ and NSE were 0.648, 0.632, and when warm up period was 4 years, $R^2$ and NSE were 0.663, 0.652 separately. Through this study, sensitive analysis of warm up period in SWAT model was conducted, and this study could give a guideline able to simulate hydrology and water quality for more accuracy than before as users change a lot of warm up periods as well as any simulation parameters.

  • PDF