• Title/Summary/Keyword: point estimator

Search Result 189, Processing Time 0.023 seconds

Joint Estimation of Phase and Frequency Offsets using a Simple Interpolation of a DFT Algorithm in Burst MPSK Transmission (버스트 MPSK 전송에서 시스템 파라미터들의 동시 추정 성능의 개선을 위한 이산 푸리에 변환의 보간기법)

  • Hong, Dae-Ki;Lee, Yong-Jo;Hong, Dae-Sik;Kang, Chang-Eon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.51-57
    • /
    • 2002
  • In this paper, a simple interpolation technique in a frequency domain is proposed for the discrete Fourier transform(DFT) algorithm. Frequency and phase resolution capabilities of the DFT algorithm can be significantly improved by the proposed interpolation technique without increase of a DFT size(the number of points for the DFT). The new technique uses a diving point in amplitude and phase spectrums. As an application, the technique can be used for joint estimation of fine frequency and phase offsets in burst mode digital transmission. Simulation results show that the joint estimator using the technique is robust to estimation errors.

Optimal Placement of Measurement Using GAs in Harmonic State Estimation of Power System (전력시스템 고조파 상태 춘정에서 GA를 미용한 최적 측정위치 선정)

  • 정형환;왕용필;박희철;안병철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.471-480
    • /
    • 2003
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. Among the reasons for its complexity are the system size, conflicting requirements of estimator accuracy, reliability in the presence of transducer noise and data communication failures, adaptability to change in the network topology and cost minimization. In particular, the number of harmonic instruments available is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Genetic Algorithms (GAs) which is widely used in areas such as: optimization of the objective function, learning of neural networks, tuning of fuzzy membership functions, machine learning, system identification and control. This HSE has been applied to the Simulation Test Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using Genetic Algorithms (GAs) in the Harmonic State Estimation (HSE).

Lane Detection Based on a Cumulative Distribution function of Edge Direction (에지 방향의 누적분포함수에 기반한 차선인식)

  • Yi, Un-Kun;Baek, Kwang-Ryul;Lee, Joon-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2814-2818
    • /
    • 2000
  • This paper describes an image processing algorithm capable of recognizing the road lane using a CDF (Cumulative Distribution Function). which is designed for the model function of the road lane. The CDF has distinctive peak points at the vicinity of the lane direction because of the directional and positional continuities of the lane. We construct a scatter diagram by collecting the edge pixels with the direction corresponding to the peak point of the CDF and carry out the principal axis-based line fitting for the scatter diagram to obtain the lane information. As noises play the role of making a lot of similar features to the lane appear and disappear in the image we introduce a recursive estimator of the function to reduce the noise effect and a scene understanding index (SUI) formulated by statistical parameters of the CDF to prevent a false alarm or miss detection. The proposed algorithm has been implemented in a real time on the video data obtained from a test vehicle driven in a typical highway.

  • PDF

Reliability Analysis under the Competing Risks (경쟁적 위험하에서의 신뢰성 분석)

  • Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • Purpose: The purpose of this study is to point out that the Kaplan-Meier method is not valid to calculate the survival probability or failure probability (risk) in the presence of competing risks and to introduce more valid method of cumulative incidence function. Methods: Survival analysis methods have been widely used in biostatistics division. However the same methods have not been utilized in reliability division. Especially competing risks cases, where several causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not noticed in the realm of reliability expertism or they are analysed in the wrong way. Specifically Kaplan-Meier method which assumes that the censoring times and failure times are independent is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced and sample competing risks data are analysed using cumulative incidence function and some graphs. Finally comparison of cumulative incidence functions and regression type analysis are mentioned briefly. Results: Cumulative incidence function is used to calculate the survival probability or failure probability (risk) in the presence of competing risks and some useful graphs depicting the failure trend over the lifetime are introduced. Conclusion: This paper shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime. In stead, cumulative incidence function is shown to be useful. Some graphs using the cumulative incidence functions are also shown to be informative.

Optimal Network Design for the Estimation of Areal Rainfall (면적강우량 산정을 위한 관측망 최적설계 연구)

  • Lee, Jae-Hyeong;Yu, Yang-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.187-194
    • /
    • 2002
  • To improve the accuracy of the areal rainfall estimates over a river basin, the optimal design method of rainfall network was studied using the stochastic characteristics of measured rainfall data. The objective function was constructed with the estimation error of areal rainfall and observation cost of point rainfall and the observation sites with minimum objective function value were selected as the optimal network. As a stochastic variance estimator, kriging model was selected to minimize the error terms. The annual operation cost including the installation cost was considered as the cost terms and an accuracy equivalent parameter was used to combine the error and cost terms. The optimal design method of rainfall network was studied in the Yongdam dam basin whose raingauge numbers need to be enlarged for the optimal rainfall networks of the basin.

Spatial-Temporal Frough Analysis of South Korea Based On Neural Networks (신경망을 이용한 우리나라의 시공 간적 가뭄의 해석)

  • 신현석
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1998.05b
    • /
    • pp.7-13
    • /
    • 1998
  • A methodology to analyze and quantify regional meteorological drough based on annual precipitation data has been introduced in this paper In this study, based on posterior probability estimator and Bayesian classifier in Spatial Analysis Neural Network ISANN), point drought probabilities categorized as extreme, severe, mild, and non drought events has been defined, and a Bayesian Drought Severity Index (BPSI) has been introduced to classify the region of interest into four drought serverities. For example, the proposed methodology has been applied to analyze the regional drought of South Korea. This is a new method to classify and quantify the spatial or regional drought based on neural network pattern recognition technique and the results show that it may be apprepriate and valuable to analyze the spatial drought.

  • PDF

Low-complexity implementation of OFDMA timing delay detector with multiple receive antennas for broadband wireless access (광대역 무선 액세스를 위한 다중 수신안테나를 갖는 OFDMA 시스템의 낮은 복잡도의 타이밍 딜레이 추정기 구현)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.19-30
    • /
    • 2007
  • In this paper, we propose low-complexity implementation of orthogonal frequency division multiple access (OFDMA) timing delay detector with multiple receive antennas for broadband wireless access (BWA). First, in order to reduce the computational complexity, the detection structure which rotates the phase of the received ranging symbols is introduced. Second, we propose the detection structure with the N-point/M-interval fast Fourier transform structure and a frequency-domain average-power estimator for complexity reduction without sacrificing the system performance. Finally, simulation results for the proposed structures and complexity comparison of the existing structure with the proposed detectors are presented.

  • PDF

Performance Improvement of LMMSE Channel Estimation Method for OFDM Systems (OFDM 시스템을 위한 LMMSE 채널추정기법의 성능 개선)

  • Kang, Yeon-Seok;Kim, Young-Soo;Suh, Doug-Young;Kim, Jin-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.43-50
    • /
    • 2005
  • In this paper, we present an improved channel estimation method for orthogonal frequency division multipexing systems using pilot symbol assisted modulation(PSAM). Conventional linear minimum mean square error(LMMSE) channel estimation method uses only pilot symbols for channel estimation. So, as the fading channel varies rapidly, the system performance is degraded. The basic idea of the proposed scheme is that we firstly estimate channel coefficients at the middle point between two pilot symbols and then compute the channel attenuation by using LMMSE method. Superior performance achieved with the proposed method is illustrated by simulation experiments with the Doppler frequency of 36Hz and 185Hz in comparison with conventional LMMSE channel estimator.

Road-Lane Detection Based on a Cumulative Distribution Function of Edge Direction

  • Yi, Un-Kun;Lee, Joon-Woong;Baek, Kwang-Ryul
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 2001
  • This paper describes an image processing algorithm capable of recognizing road lanes by using a CDF(cumulative distribution function). The CDF is designed for the model function of road lanes. Based on the assumptions that there are no abrupt changes in the direction and location of road lanes and that the intensity of lane boundaries differs from that of the background, we formulated the CDF, which accumulates the edge magnitude for edge directions. The CDF has distinctive peak points at the vicinity of lane directions due to the directional and the positional continuities of a lane. To obtain lane-related information a scatter diagram was constructed by collecting edge pixels, of which the direction corresponds to the peak point of the CDF, then the principal axis-based line fitting was performed for the scatter diagram. Noises can cause many similar features to appear and to disappear in an image. Therefore, to reduce the noise effect a recursive estimator of the CDF was introduced, and also to prevent false alarms or miss detection a scene understanding index (DUI) was formulated by the statistical parameters of the CDF. The proposed algorithm has been implemented in real time on video data obtained from a test vehicle driven on a typical highway.

  • PDF

Analysis of Water-Quality Constituents Variations before and after Weir Construction in South Han River using Probability Distribution (확률분포를 이용한 남한강 보 건설 전·후 수질변화 분석)

  • Kim, Kyung Sub
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.55-63
    • /
    • 2019
  • The Four Major Rivers Restoration Project started in 2009 and completed in early 2013 is a large-scale inter-ministry SOC project investing ₩22.2 $10^{12}$ and one of the Project's objectives was to enhance the water-quality grade through recovering the river eco-system and environment. The average concentration and probability distribution of water-quality constituents at given and selected sampling sites are very significant elements for analyzing and controlling the water-quality of rivers or reservoirs effectively. Average concentration can be estimated by point estimator, distribution function of water-quality constituents or Bootstrap method, in which the distribution function estimated with more data in case of insufficient dataset, is applied. Ipo and Gangcheon water-quality monitoring stations in South Han River were selected to compare and analyze the variation of concentration before and after Ipo and Gangcheon Weirs construction, using the whole 4-year's data, from 2005 to 2008 and from 2014 to 2017. Water-quality constituents such as BOD and COD relating to oxygen demanding wastes and TP and Chlorophyll-a relating to the process of nutrient enrichment called eutrophication were also selected. The guidelines for water-quality control and management after weir construction including evaluation of water-quality constituents' variations can be presented by this paper.