• Title/Summary/Keyword: pohang earthquake

Search Result 166, Processing Time 0.022 seconds

Study on the Relations to Estimate Instrumental Seismic Intensities for the Moderate Earthquakes in South Korea (국내 중규모 지진에 대한 계측진도 추정식 연구)

  • Yun, Kwan-Hee;Lee, Kang-Ryel
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.323-332
    • /
    • 2018
  • Recent two moderate earthquakes (2016 $M_w=5.4$ Gyeongju and 2017 $M_w=5.5$ Pohang) in Korea provided the unique chance of developing a set of relations to estimate instrumental seismic intensity in Korea by augmenting the time-history data from MMI seismic intensity regions above V to the insufficient data previously accumulated from the MMI regions limited up to IV. The MMI intensity regions of V and VI was identified by delineating the epicentral distance from the reference intensity statistics in distance derived by using the integrated MMI data obtained by combining the intensity survey results of KMA (Korea Meteorological Administration) and 'DYFI (Did You Feel It)' MMIs of USGS. The time-histories of the seismic stations from the MMI intensity regions above V were then preprocessed by applying the previously developed site-correction filters to be converted to a site-equivalent condition in a manner consistent with the previous study. The average values of the ground-motion parameters for the three ground motion parameters of PGA, PGV and BSPGA (Bracketed Summation of PGA per second for 30 seconds) were calculated for the MMI=V and VI and used to generate the dataset of the average values of the ground-motion parameters for the individual MMIs from I to VI. Based on this dataset, the linear regression analysis resulted in the following relations with proposed valid ranges of MMI. $MMI=2.36{\times}log_{10}(PGA(gal))+1.44$ ($I{\leq}MMI$$MMI=2.44{\times}log_{10}(PGV(kine))+4.86$ ($I{\leq}MMI$$MMI=2.59{\times}log_{10}(BSPGA(gal{\cdot}sec))-1.02$ ($I{\leq}MMI$

Implementation Method of GIS Map for 3D Liquefaction Risk Analysis (3차원 액상화 위험분석을 위한 GIS Map 구현 방안)

  • Lee, Woo-Sik;Jang, Yong Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.10-17
    • /
    • 2020
  • Recently, the liquefaction phenomenon was first discovered in Korea due to a magnitude 5.4 earthquake that occurred in Pohang, Gyeonsangbuk-do. When liquefaction occurs, some of the water and sand are ejected to the ground, producing a space, which leads to various dangerous situations, such as ground subsidence, building collapse, and sinkhole generation. Recently, the necessity of producing a liquefaction risk map in Korea has increased to grasp potential liquefaction areas in advance. Therefore, this study examined the drilling information from the national geotechnical information DB center at the Ministry of Land, Infrastructure, and Transport to produce a liquefaction risk map, and developed a module to implement functions for basic data modeling and 3D analysis based on drilling information database extraction and information. Through this study, effective interlocking technology of the integrated database of national land information was obtained, and three-dimensional information was generated for each stage of liquefaction risk analysis, such as soil resistance value and a liquefaction risk map. In the future, the technology developed in this study can be used as a comprehensive decision support technology for establishing a foundation for building 3D liquefaction information and for establishing a response system of liquefaction.

Analysis of Plate Motion Parameters in Southeastern South Korea using GNSS (GNSS를 활용한 한반도 동남권 지역의 지각 변동 파라미터 분석)

  • Lee, Seung Jun;Yun, Hong Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.697-705
    • /
    • 2020
  • This paper deals with an analysis of crustal movement for the sourthern part of Korean peninsula using GNSS (Global Navigation Satellite System) data. An earthquake of more than 5.0 occurred in the southeastern region of the Korean Peninsula, and it is necessary to evaluate the risk of earthquakes in various ways.In order to reveal long-term tectonic movement patten in Pohang and Gyeongju provinces, we derived crustal movement parameters related with elastic theory. We used GAMIT/GLOBK for analyzing seven-year interval GNSS data of CORS (Continuously Operating Reference Stations). The azimuth of velocity vectors trended generally about 110° with an mean magnitude of 31mm/yr.The main characteristics of the strain change for seven-year in Korea obtaind from our study. Direction of the principal axis of the maximum compression is ENE-WSW as a whole, through there are some exceptions. The mean rate of the maximum shear strain change is (0.11±0.07)μ/yr, that is approximately one third that of Chubu district, Central Japan. Taking into account our results, the mean rate of maximum shear in southern part of Korean peninsula is considered as reasonable. The mean azimuth of principal strain is about (85.4°±26.8°). There are some exceptions of azimuth because the average azimuth differ from the left and right side in Yangsan fault which are about (73.2°±21.5°) and (105.2°±17.0°) respectively, It is noteworthy that the high seismicity areas in the southern part of Korea peninsula almost coincides with the area of large strain rate. As a conclusion, it could be stated that the our study represents the characteristics of crustal deformation in the southern part of peninsula, and contributes to the researches on earthquake disaster management.

International Research Trend on Mountainous Sediment-related Disasters Induced by Earthquakes (지진 유발 산지토사재해 관련 국외 연구동향 분석)

  • Lee, Sang-In;Seo, Jung-Il;Kim, Jin-Hak;Ryu, Dong-Seop;Seo, Jun-Pyo;Kim, Dong-Yeob;Lee, Chang-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.431-440
    • /
    • 2017
  • The 2016 Gyeongju Earthquake ($M_L$ 5.8) (occurred on September 12, 2016) and the 2017 Pohang Earthquake ($M_L$ 5.4) (occurred on November 15, 2017) caused unprecedented damages in South Korea. It is necessary to establish basic data related to earthquake-induced mountainous sediment-related disasters over worldwide. In this study, we analyzed previous international studies on the earthquake-induced mountainous sediment-related disasters, then classified research areas according to research themes using text-mining and co-word analysis in VOSviewer program, and finally examined spatio-temporal research trends by research area. The result showed that the related-researches have been rapidly increased since 2005, which seems to be affected by recent large-scale earthquakes occurred in China, Taiwan and Japan. In addition, the research area related to mountainous sediment-related disasters induced by earthquakes was classified into four subjects: (i) mechanisms of disaster occurrence; (ii) rainfall parameters controlling disaster occurrence; (iii) prediction of potential disaster area using aerial and satellite photographs; and (iv) disaster risk mapping through the modeling of disaster occurrence. These research areas are considered to have a strong correlation with each other. On the threshold year (i.e., 2012-2013), when cumulative number of research papers was reached 50% of total research papers published since 1987, proportions per unit year of all research areas should increase. Especially, the proportion of the research areas related to prediction of potential disaster area using aerial and satellite photographs is highly increased compared to other three research areas. These trends are responsible for the rapidly increasing research papers with study sites in China, and the research papers examined in Taiwan, Japan, and the United States have also contributed to increases in all research areas. The results are could be used as basic data to present future research direction related to mountainous sediment-related disasters induced by earthquakes in South Korea.

Tectonic Movement in the Korean Peninsula (II): A Geomorphological Interpretation of the Spatial Distribution of Earthquakes (한반도의 지반운동 (II): 한반도 지진분포의 지형학적 해석)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.488-505
    • /
    • 2007
  • The purposes of this research are twofold; 1) to verify spatial differences of tectonic movement using the spatial distribution of earthquakes, and 2) to infer mechanisms that generate spatial accumulation patterns of earthquakes in the Korean Peninsula. The first part of this sequential paper (Park, 2007) argues that the Korean Peninsula consists of four geostructural regions in which tectonic deformation and consequent geomorphological development patterns are different from each other Since this conclusion has been made by terrain analyses alone, it is necessary to verify this suggestion using other independent geophysical data. Because earthquakes are results of movement and deformation of land masses moving in different directions, the distribution of earthquake epicenters may be used to identify the direction and rates of land mass movement. This paper first analysed the spatial distribution of earthquakes using spatial statistics, and then results were compared with the spatial arrangement of geostructural regions. The spatial distribution of earthquakes in the Korean Peninsula can be summarized as the followings; firstly, the intensity of earthquakes shows only weak spatial dependency, and shows large difference even at adjacent regions. Secondly, the epicenter distribution has a clear spatial accumulation pattern, even though the intensity of earthquake shows a random pattern. Thirdly, the high density area of earthquakes shows a clear 'L' shape, passing through Pyeongannam-do, centered at Pyeongyang, and Hwanghae-do, Seosan and Pohang. The correlation coefficient between the density of earthquakes and distance from geostructral region boundaries is much higher than those between the density of fault lines and distance from tectonic division boundaries. Since fault lines and tectonic divisions in the Korean Peninsula are the results of long-term geological development, there is an apparent scale discrepancy to find significant correlations with earthquakes. This result verifies the research hypothesis that the Korean Peninsula is divided into four geostructral regions in which each has its own moving direction and spatial deformation characteristics. The existence of geostructural regions is also supported by the movement parrerns of land masses estimated from the GPS measurements. This conclusion is expected to provide a new perspective to understand the geomorphological developments and the earthquake occurrences in the Korean Peninsula.

Use of a Genetic Algorithm to Predict the Stiffness Reductions and Retrofitting Effects on Structures Subjected to Seismic Loads (지진하중을 받은 구조물의 유전알고리즘 기반 강성저하 및 보강 효과 추정)

  • Lee, Jae-Hun;Ahn, Kwang-Sik;Lee, Sang-Youl
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.193-199
    • /
    • 2020
  • This study examines a method for identifying stiffness reductions in structures subjected to seismic loads and retrofitting effects using a combination of the finite element method and an advanced genetic algorithm. The novelty of this study is the application of seismic loading and its response to anomalies in the tested structure. The technique described in this study may enable not only detection of damaged elements but also the identification of their locations and the extent of damage due to seismic loading. To demonstrate the feasibility of the method, the advanced genetic algorithm is applied to frame and truss bridge structures subjected to El Centro and Pohang seismic loads. The results reveal the excellent computational efficiency of the method and its ability to prevent severe damage from earthquakes.

Dynamic Behavior of Unsaturated Decomposed Mudstone Soil Under Low Strain Amplitude (저변형률하 불포화 이암풍화토의 동적거동)

  • Huh, Kyung-Han;Chung, Choong-Sun;Bae, Joong-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.19-27
    • /
    • 2004
  • The interest in the dynamic properties of soils has increased strongly because of earthquake, heavy traffic, and foundations undergo high amplitude of vibrations. Most of soils in Korean peninsula are composed of granite soils, especially the decomposed mudstone soils are widely spread in Pohang areas, Kyong-buk province. Therefore, it is very important to investigate the dynamic properties of these types of soils. The most important soil parameters under dynamic loadings are shear modulus and material dampings. Furthermore, few definitive data exist that can evaluate the behavior of unsaturated decomposed mudstone soils under dynamic loading conditions. The investigations described in this paper is designed to identify the shear modulus and damping ratio due to a surface tension for the unsaturated decomposed mudstone soils under low and high strain amplitude. For this purpose, the resonant column test and the cyclic triaxial test were performed. Test results and data have shown that the optimum saturated degree of decomposed mudstone soils under low and strain amplitude is $32{\sim}37%$ which is higher than that of decomposed granite due to the amount of fine particles as well as the type and proportion of chief rock-forming minerals.

Accuracy Evaluation of Dispersion-Correction Finite Difference Model for Tsunami Propagation (지진해일 전파 분산보정 유한차분모형의 정밀도 평가)

  • 윤성범;임채호;조용식;최철순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.116-127
    • /
    • 2002
  • Most of finite difference numerical models for the simulation of tsunami propagation developed so for are based on the shallow-water equations which are frequently solved by the leap-frog scheme. If the grid size is properly selected, this numerical scheme gives a correct dispersion effect fur constant water depth. However, if the water depth changes, the dispersion effect of tsunamis can not be accurately considered at every grid point in the whole computational domain. In this study we improved the existing two-dimensional dispersion-correction finite difference numerical scheme. The present scheme satisfies the local dispersion relationships of tsunamis propagating over a slowly varying topography while using uniform grid size and time step. To verify the applicability of the improved numerical model, a tsunami due to 1983 East Sea central earthquake is simulated for Korean harbors with the tide gage records such as Sokcho, Mukho, Pohang and Ulsan in the East Sea. Numerical results of the 1983 tsunami are compared with the measured data and the accuracy of the present numerical model is evaluated.

A Study on Algorithm for Determining Seismic Improvement Priority of Highway Bridges (도로교 내진보강 우선순위 결정을 위한 알고리즘에 관한 연구)

  • Kim, Hyung-Gyu;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.138-147
    • /
    • 2018
  • With the recent series of damage caused by earthquakes in Korea, such as Gyeongju and Pohang, we know that Korea is no longer a safe zone for earthquakes and that we need to be prepared for them. In addition, bridges built prior to the introduction of seismic design concepts remain without adequate seismic reinforcement measures, and earthquake reinforcement should be performed efficiently considering economic and structural safety. Preliminary assessment of seismic performance of existing bridges is divided into four seismic groups, taking into account seismicity, vulnerability and Impact, considering the magnitude of the existing bridge's seismic, and prioritization for further evaluation of seismic performance. In this study, unlike the existing anti-seismic reinforcement priority method, scores are calculated based on the seismic design criteria applied to bridges, importance coefficient of the bridge including the zone coefficient and the Importance, vulnerability index of the bridge including the soil condition and the elapsed years, detail coefficient of the bridge including the superstructure form, the span length, the width, the height, the design load, and the daily traffic volume. The calculated score items will be weighted and grouped according to the results. Using this, a simpler and more efficient algorithm was proposed to determine the priority of seismic reinforcement on a bridge.

Identification of Dynamic Characteristics and Numerical Analysis of Ceiling System Considering Collision Adjacent Structures (천장시스템의 동특성 식별 및 인접 구조물과의 충돌을 고려한 동적응답해석)

  • Jeon, Min-Jun;Ju, Bo-Geun;Cho, Bong-Ho;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.205-213
    • /
    • 2019
  • In the Pohang Earthquake in 2017, considerable damage to non-structural elements, such as ceiling systems, exterior finishes, and curtain walls, was reported; thus, the seismic designs of non-structural elements are important. In this study, the modal characteristics of a ceiling system were investigated through the impact hammer test. The frequency and damping ratio according to the length of the hanger bolt were identified. In addition, collision experiments were conducted to obtain the impact duration for exactly considering the impact effects of the ceiling against a wall or other adjacent elements. Based on the identified dynamics and impact duration of the ceiling system, the seismic responses of the ceiling system were obtained numerically in case of collision. Numerical simulation results show that the impact load tends to increase with the clearance between the ceiling and adjacent elements, and is not correlated with the length of the hanger bolt.