• Title/Summary/Keyword: pmm

Search Result 102, Processing Time 0.022 seconds

Maneuvering Performances of a Ship with Flap Rudder (Flap 타를 채택한 선박의 조종성능 특성)

  • Lee Ho-Young;Shin Sang-Sung;Park Hong-Shik;Park Jong-Hwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.1
    • /
    • pp.70-74
    • /
    • 2001
  • In this paper, we studied the maneuvering performances of a ship with flapped rudder. PMM tests were carried out for a ship model with horn type rudder or flapped rudder. The Abkowitz's model was used as a basic mathematical model to simulate the maneuvering motions. The maneuvering motions of a ship with flapped rudder were compared with those of a ship with horn-type rudder. As a result, it was found that the turning ability of a ship with flapped rudder was remarkably improved.

  • PDF

Strenghts and Hardening Properties of Epoxy-modififed Mortars Using Wood-Tar of Wood By-Product (목재 부산물인 목타르를 활용한 에폭시수지 혼입 PMM의 강도 및 경화특성)

  • Kim, Joo-Young;Ham, Seong-Min;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.21-22
    • /
    • 2014
  • The purpose of this study is to ascertain strengths and hardening rate of epoxy-modified mortar with wood-tar contents. The polymer-modified mortars (PMMs) using epoxy resin with wood-tar are prepared with various polymer-binder ratios of 1, 3, 5% and wood-tar contents of 0, 5, 10, 15 and 20%. The PMMs using epoxy resin are tested for compressive, flexural and tensile strengths and hardening rate of epoxy resin. As a result, the strengths and hardening rate under polymer-binder ratio 1% and wood-tar content of 5% are more excellent than those of other specimens.

  • PDF

Analysis of H-polarized Electromagnetic Scattering by a Conductive Strip Grating Between a Grounded Double Dielectric Layer Using FGMM (FGMM을 이용한 접지된 2중 유전체층 사이의 완전도체띠 격자구조에 의한 H-분극 전자파 산란 해석)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.83-88
    • /
    • 2020
  • In this paper, H-polarized electromagnetic scattering problems by a conductive strip grating between a grounded double dielectric layer are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, and the conductive boundary condition is applied to analysis of the conductive strip. The numerical results for normalized reflected power are analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of the grounded double dielectric layers, and incident angles. Generally, as the value of the dielectric constant and dielectric thickness of a grounded double dielectric layer increases, the reflected power increased. And as dielectric thickness of a grounded double dielectric layer increases, the current density induced in the strip center increases. The numerical results for the presented structure of this paper are shown in good agreement compared to those of the existing papers using the PMM(Point Matching Method).

A Study on Estimation of Manoeuvring Performance in Shallow Water using CFD in Initial Ship Design Phase (선박 초기설계단계에서 CFD를 이용한 천수 중 조종성능 추정에 관한 연구)

  • Kim, In-Tae;Kim, Sang-Hyun;Kim, Hyun-Jun;Kim, Dong-Young;Yang, Jung-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.350-360
    • /
    • 2018
  • Analysis of ship's manoeuverability in shallow water is an important task from the perspective of the vessels' navigational safety. Since the number of ships operated in restricted water has increased due to the enlargement of vessels and ships represent different characteristics of the manoeuverability when operated in shallow and deep water, it is significant to evaluate ship manoeuverability at initial design stage. At the initial stage of design, the estimation of manoeuverability is generally performed with hydrodynamic coefficients estimated based on empirical formula. However, the accuracy of estimating hydrodynamic coefficients by the empirical formula in shallow water is poor compared to that in deep water. Therefore, the error in the estimation of manoeuverability increases in shallow water. In this study, CFD is proposed to improve the accuracy of manoeuverability in shallow water at the initial design stage and hydrodynamic coefficients were obtained based on PMM test in shallow water. Furthermore, the ship manoeuverability was estimated both the proposed strategy and the empirical formula. At last, validity of the proposed strategy using CFD for the estimation of manoeuverability was confirmed by comparison with the manoeuverability estimation results from model test.

Analysis of the Electromagnetic Scattering by Conducting Strip Gratings with 2 Dielectric Layers On a Grounded Plane (접지평면위에 2개의 유전체층을 가지는 저항띠 격자구조에서의 전자파산란 해석)

  • 윤의중
    • The Journal of Information Technology
    • /
    • v.4 no.3
    • /
    • pp.77-86
    • /
    • 2001
  • In this paper, Electromagnetic scattering problem by a resistive strip grating with 2 dielectric layers on a ground plane according as resistivity of resistive strip, relative permittivity and thickness of dielectric layers, and incident angles of a electric wave is analyzed by applying the PMM (Point Matching Method) known as a numerical procedure. The scattered electromagnetic fields are expanded in a series of floquet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. According as the relative permittivity and the thickness of layers are increased, the values of the geometrically normalized reflected power have a high value and the values of strip width are moved toward a high value going from left to right. When the resistivity of this paper has a value of zero, the numerical results of the geometrically normalized reflected power show in good agreement with those by the PMM of existing paper. Then, the most energys of the sharp variation point in minimum values of the geometrically normalized reflected power are scattered in direction of the other angles except incident angle.

  • PDF

Efficacy Test of Polycan, a Beta-Glucan Originated from Aureobasidium pullulans SM-2001, on Anterior Cruciate Ligament Transection and Partial Medial Meniscectomy-Induced-Osteoarthritis Rats

  • Kim, Joo-Wan;Cho, Hyung-Rae;Ku, Sae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.274-282
    • /
    • 2012
  • The object of this study was to assess the efficacy of Polycan from Aureobasidium pullulans SM-2001, which is composed mostly of beta-1,3-1,6-glucan, on osteoarthritis (OA)-induced by anterior cruciate ligament transection and partial medial meniscectomy (ACLT&PMM). Three different dosages of Polycan (85, 42.5, and 21.25 mg/kg) were orally administered once a day for 84 days to male rats a week after ACLT&PMM surgery. Changes in the circumference and maximum extension angle of each knee, and in cartilage histopathology were assessed using Mankin scores 12 weeks after Polycan administration. In addition, cartilage proliferation was evaluated using bromodeoxyuridine (BrdU). As the result of ACLT&PMM, classic OA was induced with increases in maximum extension angles, edematous knees changes, and capsule thickness, as well as decreases in chondrocyte proliferation, cartilages degenerative changes, and loss of articular cartilage. However, these changes (except for capsule thickness) were markedly inhibited in all Polycan- and diclofenac sodium-treated groups compared with OA control. Although diclofenac sodium did not influence BrdU uptake, BrdU-immunoreactive cells were increased with all dosages of Polycan, which means that Polycan treatment induced proliferation of chondrocytes in the surface articular cartilage of the tibia and femur. The results obtained in this study suggest that 84 days of continuous oral treatment of three different dosages of Polycan led to lesser degrees of articular stiffness and histological cartilage damage compared with OA controls 91 days after OA inducement, suggesting that the optimal Polycan dosage to treat OA is 42.5 mg/kg based on the present study.

The Linear Stability Derivatives by the Transient Maneuvering Method (과도응답법(過渡應答法)을 이용한 조종미계수(操縱微係數)의 추정(推定)에 관한 연구(硏究))

  • Seung-Keon,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.31-37
    • /
    • 1990
  • To obtain the values of linear stability derivatives, both analytical and experimental methods are now proposed and in use. The experimental method is well known as the planar motion mechanism(PMM) test. Its concept is to drive the model with a prescrived frequency and amplitude of the motion and pick up the hydrodynamic forces. But this kind of method is inconvenient in case we want to know the stability derivatives in wider range of the frequencies. So a different method is attempted that with one test run, we can get the derivatives in wider range of the frequencies. This technique forces the impulsive motion on the model, using the power of the oil pressure pump. This kind of method was originated by Scragg, C.A., Cummins, W.E, or Frank, T., This resarch is a further development of such preceding works. Todd's series 60(Cb=0.7) 2.00M model is chosen for the test and the results are compared with Van Leeuwen's famous PMM test results.

  • PDF

A Study on TM Scattering by a Resistive Strip Grating Between a Double Dielectric Layer (2중 유전체층 사이의 저항띠 격자구조에 의한 TM 산란에 관한 연구)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • In this paper, n this paper, E-polarized electromagnetic scattering problems by a resistive strip grating between a double dielectric layer are analyzed by applying the PMM(Point Matching Method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, and the resistive boundary condition is applied to analysis of the resistive strip. The numerical results for the normalized reflected and transmitted power are analyzed by according as the relative permittivity and thickness of the double dielectric layers, and the resistivity of resistive strip. Overall, when the resistivity of the resistive strip decreased or the relative permittivity of the dielectric layer increased, the reflected power increased, and as the reflected power increased, the transmitted power decreased relatively. Especially, as the relative permittivity of double dielectric layer increases, the minimum value of the variation curve of the reflected power shifted in the direction that the grating period decreased. The numerical results for the presented structure of this paper are shown in good agreement compared to those of the existing papers.

A numerical study on hydrodynamic maneuvering derivatives for heave-pitch coupling motion of a ray-type underwater glider

  • Lee, Sungook;Choi, Hyeung-Sik;Kim, Joon-Young;Paik, Kwang-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.892-901
    • /
    • 2020
  • We used a numerical method to estimate the hydrodynamic maneuvering derivatives for the heave-pitch coupling motion of an underwater glider. It is very important to assess the hydrodynamic maneuvering characteristics of a specific hull form of an underwater glider in the initial design stages. Although model tests are the best way to obtain the derivatives, numerical methods such as the Reynolds-averaged Navier-Stokes (RANS) method are used to save time and cost. The RANS method is widely used to estimate the maneuvering performance of surface-piercing marine vehicles, such as tankers and container ships. However, it is rarely applied to evaluate the maneuvering performance of underwater vehicles such as gliders. This paper presents numerical studies for typical experiments such as static drift and Planar Motion Mechanism (PMM) to estimate the hydrodynamic maneuvering derivatives for a Ray-type Underwater Glider (RUG). A validation study was first performed on a manta-type Unmanned Undersea Vehicle (UUV), and the Computational Fluid Dynamics (CFD) results were compared with a model test that was conducted at the Circular Water Channel (CWC) in Korea Maritime and Ocean University. Two different RANS solvers were used (Star-CCM+ and OpenFOAM), and the results were compared. The RUG's derivatives with both static drift and dynamic PMM (pure heave and pure pitch) are presented.

Solution of TE Scattering by a Resistive Strip Grating Between a Double Dielectric Layer Using FGMM (FGMM을 이용한 2중 유전체층 사이의 저항띠 격자구조에 의한 TE 산란 해)

  • Uei-Joong Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.619-624
    • /
    • 2023
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating between a double dielectric layer are analyzed by using the FGMM(fourier galerkin moment method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. In order to deal with the problem of the double dielectric layer, numerical calculation was performed only when the thickness and relative permittivity of the dielectric layers had the same value. Overall, as the resistivity of the uniform resistivity increased, the current density induced in the resistive strip decreased, the reflected power decreased, and the transmitted power relatively increased. The numerical results of the structure proposed in this paper are shown in good agreement compared to the results of PMM, a numerical analysis method of the existing paper.