• Title/Summary/Keyword: pluripotent

Search Result 210, Processing Time 0.023 seconds

Artificial gametes from stem cells

  • Moreno, Inmaculada;Miguez-Forjan, Jose Manuel;Simon, Carlos
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.2
    • /
    • pp.33-44
    • /
    • 2015
  • The generation of artificial gametes is a real challenge for the scientific community today. In vitro development of human eggs and sperm will pave the way for the understanding of the complex process of human gametogenesis and will provide with human gametes for the study of infertility and the onset of some inherited disorders. However, the great promise of artificial gametes resides in their future application on reproductive treatments for all these people wishing to have genetically related children and for which gamete donation is now their unique option of parenthood. This is the case of infertile patients devoid of suitable gametes, same sex couples, singles and those fertile couples in a high risk of transmitting serious diseases to their progeny. In the search of the best method to obtain artificial gametes, many researchers have successfully obtained human germ cell-like cells from stem cells at different stages of differentiation. In the near future, this field will evolve to new methods providing not only viable but also functional and safe artificial germ cells. These artificial sperm and eggs should be able to recapitulate all the genetic and epigenetic processes needed for the correct gametogenesis, fertilization and embryogenesis leading to the birth of a healthy and fertile newborn.

Modification of Pluripotency and Neural Crest-Related Genes' expression in Murine Skin-Derived Precursor Cells by Leukemia Inhibitory Factor (LIF)

  • Park, Sang Kyu;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.37 no.4
    • /
    • pp.175-180
    • /
    • 2012
  • Skin-derived precursor cells (SKPs) are multipotent, sphere-forming and embryonic neural crest-related precursor cells that can be isolated from dermis. It is known that the properties of porcine SKPs can be enhanced by leukemia inhibitory factor (LIF) which is an essential factor for the generation of embryonic stem cells in mice. In our present study, to enhance or maintain the properties of murine SKPs, LIF was added to the culture medium. SKPs were treated with 1,000 IU LIF for 72 hours after passage 3. Quantitative real time RT-PCR was then performed to quantify the expression of the pluripotent stem cell specific genes Oct4, Nanog, Klf4 and c-Myc, and the neural crest specific genes Snai2 and Ngfr. The results show that the expression of Oct4 is increased in murine SKPs by LIF treatment whereas the level of Ngfr is decreased under these conditions. Interestingly, LIF treatment reduced Nanog expression which is also important for cell proliferation in adult stem cells and for osteogenic induction in mesenchymal stem cells. These findings implicate LIF in the maintenance of stemness in SKPs through the suppression of lineage differentiation and in part through the control of cell proliferation.

Small Molecules that Potentiate Neuroectodermal Differentiation of Mouse Embryonic Stem Cells

  • Lee, Jonghwan;Rhee, Ki-Jong;Jung, Dongju
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.32-40
    • /
    • 2013
  • Pluripotent stem cells (PSCs) have enormous potential in the biomedical sciences because they can grow continuously and differentiate into any kind of cell in the body. However, for future application in regenerative medicine, it is still a challenge to control the differentiation of PSCs without using genetic materials. To control the differentiation of PSCs, small molecules might be the best substitute for genetic materials considering the following advantages: small size, which enables penetration of plasma membrane; easy-to-modify structure; and low chance of genetic recombination in treated cells. Herein, we introduce small molecules that induce the neuroectodermal differentiation of mouse embryonic stem cells (ESCs). The small molecules were identified via ESC-based consecutive screenings of small-molecule libraries composed of 324 natural compounds or 93 selected drugs. The natural compounds discovered in the first screening were used to select 93 structurally similar drugs out of 1,200 approved drugs. In the second screening, among the 93 compounds, we found 4 drugs that induced the neuroectodermal differentiation of ESCs. These drugs were progesteroneor corticoid-derivatives. Our results suggest that small molecules targeting the progesterone receptor or glucocorticoid receptor could be used as chemical tools to induce the differentiation of PSCs into a specific germ lineage.

Investigating the role of Sirtuins in cell reprogramming

  • Shin, Jaein;Kim, Junyeop;Park, Hanseul;Kim, Jongpil
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.500-507
    • /
    • 2018
  • Cell reprogramming has been considered a powerful technique in the regenerative medicine field. In addition to diverse its strengths, cell reprogramming technology also has several drawbacks generated during the process of reprogramming. Telomere shortening caused by the cell reprogramming process impedes the efficiency of cell reprogramming. Transcription factors used for reprogramming alter genomic contents and result in genetic mutations. Additionally, defective mitochondria functioning such as excessive mitochondrial fission leads to the limitation of pluripotency and ultimately reduces the efficiency of reprogramming. These problems including genomic instability and impaired mitochondrial dynamics should be resolved to apply cell reprograming in clinical research and to address efficiency and safety concerns. Sirtuin (NAD+-dependent histone deacetylase) has been known to control the chromatin state of the telomere and influence mitochondria function in cells. Recently, several studies reported that Sirtuins could control for genomic instability in cell reprogramming. Here, we review recent findings regarding the role of Sirtuins in cell reprogramming. And we propose that the manipulation of Sirtuins may improve defects that result from the steps of cell reprogramming.

Oct4 resetting by Aurkb–PP1 cell cycle axis determines the identity of mouse embryonic stem cells

  • Shin, Jihoon;Youn, Hong-Duk
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.527-528
    • /
    • 2016
  • In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintaining the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs. Aurkb starts to phosphorylate Oct4(S229) at the onset of G2/M phase, inducing the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Furthermore, Aurkb phosphormimetic and PP1 binding-deficient mutations in Oct4 disrupt the pluripotent cell cycle, lead to the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Based on our findings, we suggest that the cell cycle is directly linked to pluripotency programs in ESCs.

Comparison of Various Transfection Methods in Human and Bovine Cultured Cells

  • Jin, Longxun;Kim, Daehwan;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.177-185
    • /
    • 2014
  • Transfection is a gene delivery tool that is a popular means of manipulating cellular properties, such as induced pluripotent stem cell (iPSC) generation by reprogramming factors (Yamanaka factors). However, the efficiency of transfection needs to be improved. In the present study, three transfection protocols - non-liposomal transfection (NLT), magnetofection and electroporation - were compared by analysis of their transfection efficiencies and cell viabilities using human dental pulp cells (hDPC) and bovine fetal fibroblasts (bFF) as cell sources. Enhanced green fluorescent protein gene was used as the delivery indicator. For magnetofection, Polymag reagent was administrated. NLT, FuGENE-HD and X-treme GENE 9 DNA transfection reagents were used for NLT. For electroporation, the $Neon^{TM}$ and $NEPA21^{TM}$ electroporators were tested. $Neon^{TM}$ electroporation showed highest transfection efficiency when compared with NLT, magnetofection, and $NEPA21^{TM}$ electroporation, with transfection efficiency of about 33% in hDPC and 50% in bFF, based on viable cell population in each cell type. These results suggest that transfection by $Neon^{TM}$ electroporation can be used to deliver foreign genes efficiently in human and bovine somatic cells.

Efficient Production of Parthenogenetic Murine Embryonic Stem Cells by the Treatment of Pluripotin (SC-1) (Pluripotin(SC-1) 처리를 통한 단위발생 마우스 배아줄기세포 생산 효율 향상)

  • Kang, Hoin;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.171-174
    • /
    • 2012
  • Various small molecules can be used to control major signaling pathways to enhance stemness and inhibit differentiation in murine embryonic stem cell (mESC) culture. Small molecules inhibiting the fibroblast growth factor (FGF)/ERK pathway can preserve pluripotent cells from stimulation of differentiation. In this study, we aimed to evaluate the effect of pluripotin (SC-1), an inhibitor of the FGF/ERK pathway, on the colony formation of outgrowing presumptive mESCs. After plating the zona pellucida-free blastocyst on the feeder layer, attached cell clumps was cultured with SC-1 until the endpoint of the experiment at passage 10. In this experiment, when the number of colonies was counted at passage 3, SC-1-treated group showed 3.4 fold more mESC colonies when compared with control group. However, after passage 4, there was no stimulating effect of SC-1 on the colony formation. In conclusion, SC-1 treatment can be used to promote mESC generation by increasing the number of early mESC colonies.

Construction of tat-and nef-defective HIV-1 and screening of natural extracts with anti-HIV-1 activity

  • Lee, Ann-Hwee;Song, Man-Ki;Suh, Young-Ah;Sung, Young-Chul
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.77-77
    • /
    • 1995
  • Human immunodeficiency virus type 1 (HIV-1) contains several nonstructural genes which are required for the viral replication and disease pathogenesis. Among them, tat and nef genes encode an essential transactivator of HIV-1 LTR and a pluripotent protein which seems to be essential for the in vivo but not in vitro viral replication, respectively. We constructed two tat and n of defective HIV-1 and tested for their ability to replicate in several T cells. The defective viruses did not replicate in CD4$\^$+/ T cells, but rescued in the recombinant Jurkat-tat cell which also contains tat gene. The replication of tat and nef defective HIV-1 which expresses chloramphenicol acetyltransferase(CAT) gene was easily detected by a sensitive CAT assay. No revertant was identified during the passages of the mutant viruses for more than two months in Jurkat-tat cells. tat and n of defective HIV-1 could be used instead of wild type viruse for several purposes such as inhibitor screening and development of attenuated AIDS vaccine.

  • PDF

ENDOTHELIAL PROGENITOR CELLS AND MESENCHYMAL STEM CELLS FROM HUMAN CORD BLOOD (제대혈 내피기원세포 및 간엽줄기세포의 분화에 대한 연구)

  • Kim, Eun-Seok;Kim, Hyun-Ok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • Stem cell therapy using mesenchymal stem cells(MSCs) transplantation have been paid attention because of their powerful proliferation and pluripotent differentiating ability. Although umbilical cord blood (UCB) is well known to be a rich source of hematopoietic stem cells with practical and ethical advantages, the presence of mesenchymal stem cells (MSCs) in UCB has been controversial and it remains to be validated. In this study, we examine the presence of MSCs in UCB harvests and the prevalence of them is compared to that of endothelial progenitor cells. For this, CD34+ and CD34- cells were isolated and cultured under the endothelial cell growth medium and mesenchymal stem cell growth medium respectively. The present study showed that ESC-like cells could be isolated and expanded from preterm UCBs but were not acquired efficiently from full-terms. They expressed CD14-, CD34-, CD45-, CD29+, CD44+, CD105+ cell surface marker and could differentiate into adipogenic and osteogenic lineages. Our results suggest that MSCs are fewer in full-term UCB compared to endothelial progenitor cells.

The Synergistic Effects of Agarose Scaffold Supplemented with Low-molecular-weight Silk Fibroin in Bone Tissue Regeneration

  • Park, Seung-Won;Goo, Tae-Won;Kim, Seong-Ryul;Kweon, Hae-Yong;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.2
    • /
    • pp.193-199
    • /
    • 2011
  • Silk protein and agarose are widely known as biocompatible materials in the human body. A three-dimensional (3D) scaffold composed of agarose and low-molecular- weight silk fibroin (LSF) was fabricated and examined in terms of structural characteristics and cellular responses in bone tissue engineering. This study showed that mouse pluripotent precursor cells attached to and proliferated uniformly on and within the LSF-containing 3D scaffold. Interestingly, cell proliferation and attachment was shown to be higher in a 3D scaffold containing 0.02% LSF, as compared to other LSF concentrations. The results of this study suggest that agarose-LSF scaffolds may be useful materials for tissue engineering.