• 제목/요약/키워드: plating time

검색결과 296건 처리시간 0.027초

강판의 부식방지를 위한 도금층 조직관찰 (The Investigation of Microstructure of Electro-deposited Layer for the Corrosion Resistance on Sheet Steel)

  • 김인수;이세광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.224-227
    • /
    • 1997
  • In Ni and Zn plating, microstructure and corrosion behavior of electrodeposits with various electroplating condition were investigated. Optical microstructure, SEM images and polarization curves of electrodeposits are different with plating time and temperature.

  • PDF

전해도금에 의해 제조된 플립칩 솔더 범프의 특성 (Characteristics of Sn-Pb Electroplating and Bump Formation for Flip Chip Fabrication)

  • 황현;홍순민;강춘식;정재필
    • Journal of Welding and Joining
    • /
    • 제19권5호
    • /
    • pp.520-525
    • /
    • 2001
  • The Sn-Pb eutectic solder bump formation ($150\mu\textrm{m}$ diameter, $250\mu\textrm{m}$ pitch) by electroplating was studied for flip chip package fabrication. The effect of current density and plating time on Sn-Pb deposit was investigated. The morphology and composition of plated solder surface was examined by scanning electron microscopy. The plating thickness increased wish increasing time. The plating rate became constant at limiting current density. After the characteristics of Sn-Pb plating were investigated, Sn-Pb solder bumps were fabricated in optimal condition of $7A/dm^$. 4hr. Ball shear test after reflow was performed to measure adhesion strength between solder bump and UBM (Under Bump Metallurgy). The shear strength of Sn-Pb bump after reflow was higher than that of before reflow.

  • PDF

3D패키지용 Via 구리충전 시 전류밀도와 유기첨가제의 영향 (Effects of Current Density and Organic Additives on via Copper Electroplating for 3D Packaging)

  • 최은혜;이연승;나사균
    • 한국재료학회지
    • /
    • 제22권7호
    • /
    • pp.374-378
    • /
    • 2012
  • In an effort to overcome the problems which arise when fabricating high-aspect-ratio TSV(through silicon via), we performed experiments involving the void-free Cu filling of a TSV(10~20 ${\mu}m$ in diameter with an aspect ratio of 5~7) by controlling the plating DC current density and the additive SPS concentration. Initially, the copper deposit growth mode in and around the trench and the TSV was estimated by the change in the plating DC current density. According to the variation of the plating current density, the deposition rate during Cu electroplating differed at the top and the bottom of the trench. Specifically, at a current density 2.5 mA/$cm^2$, the deposition rate in the corner of the trench was lower than that at the top and on the bottom sides. From this result, we confirmed that a plating current density 2.5 mA/$cm^2$ is very useful for void-free Cu filling of a TSV. In order to reduce the plating time, we attempted TSV Cu filling by controlling the accelerator SPS concentration at a plating current density of 2.5 mA/$cm^2$. A TSV with a diameter 10 ${\mu}m$ and an aspect ratio of 7 was filled completely with Cu plating material in 90 min at a current density 2.5 mA/$cm^2$ with an addition of SPS at 50 mg/L. Finally, we found that TSV can be filled rapidly with plated Cu without voids by controlling the SPS concentration at the optimized plating current density.

플렉시블 동장적층판 개발을 위한 동박표면처리에 관한 연구 (The study of Copper foil surface treatment for Flexible Copper Clad Laminate (FCCL))

  • 문원철;이창용;이재홍;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.24-26
    • /
    • 2006
  • The copper foil of 10fm of thickness was prepared, and the surface treatment on the copper foil was done by the method of the electrolytic plating in the acid solution with the sulfate ion as a purpose to remove the main element of the surface contaminant of copper variously. The structure on the surface of the copper foil in this study investigated AFM with SEM the changed phenomenon according to added plating time and current. The phenomenon of the structure's of the oxide on the surface of long plating time and high current growing was confirmed.

  • PDF

무전해 니켈 도금법으로 제조된 니켈-다이아몬드 복합분체의 특성 (Characteristics of Nickel-Diamond Composite Powders by Electroless Nickel Plating)

  • 안종관;김동진;;이재령;이익규;정헌생
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.224-232
    • /
    • 2004
  • Ni-diamond composite powders with nickel layer of round-top type on the surface of synthetic diamond (140/170 mesh) were prepared by the electroless plating method (EN) with semi-batch reactor. The effects of nickel concentration, feeding rates of reductant, temperature, reaction time and stirring speeds on the weight percentage and morphology of deposited Ni, mean particle size and specific surface area of the composite powders were investigated by Atomic Adsortion Spectrometer, SEM-EDX, PSA and BET. It was found that nucleated Ni-P islands, acted as catalytic sites for further deposition and grown into these relatively thick layers with nodule-type on the surface of diamond by a lateral growth mechanism. The weight percentage of Ni in the composite powder increased with reaction time, feeding rate of reductant and temperature, but decreased with stirring speed. The weight percentage of Ni in Ni-diamond composite powder was 55% at 150 min., 200 rpm and 7$0^{\circ}C$ .

Fiber surface and electrical conductivity of electroless Ni-plated PET ultra-fine fibers

  • Choi, Woong-Ki;Kim, Byung-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • 제14권4호
    • /
    • pp.243-246
    • /
    • 2013
  • In this work, electroless Ni-plating on polyethylene terephthalate (PET) ultra-fine fibers surfaces was carried out to improve the electric conductivity of the fiber. The surface properties of PET ultra-fine fibers were characterized using scanning electron microscopy, X-ray diffraction, and contact angle analyses. The electric conductivity of the fibers was measured using a 4-point testing method. The experimental results revealed the presence of island-like nickel clusters on the PET ultra-fine fibers surfaces in the initial plating state, and the electric conductivity of the Ni-plated fibers was enhanced with increasing plating time and thickness of the Ni-layers on the PET ultra-fine fibers.

MEMS Probe Card용 Micro Needle 공정 연구 (Plating Process of Micro-needle for MEMS Probe Card)

  • 한명수;안수창;남안식;김장현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.152-152
    • /
    • 2008
  • Micro probe with Ni-Co tip was designed. Unit processes for fabricating the micro probe were developed. We are investigated the micro probe tip using by Ni-Co alloy. One-step and three-step needle was fabricated by plating process, CMP, and photolithography process. The plating thickness was varied by current density and time. Futher data will be extract by different process conditions.

  • PDF

Tin-Cobalt 합금 도금공정에서 도금물성 향상을 위한 최적 용액조성 디자인 (Plating Solution Composition Control of Tin-Cobalt Alloy Electroplating Process)

  • 이승범;홍인권
    • 공업화학
    • /
    • 제17권2호
    • /
    • pp.150-157
    • /
    • 2006
  • 최근 들어 크롬대체 도금공정의 필요성이 대두되고 있는 가운데, 크롬도금과 색차가 적고 기계적 특성이 우수하며 환경 친화적인 주석 계 합금도금의 사용이 확대되고 있다. 따라서 본 연구에서는 Sn-Co 합금도금공정을 바탕으로 광택제, 착화제로서 glycine 사용에 대한 연구를 수행하고자 하였다. Sn-Co 합금도금과 glycine 첨가에 따른 물리적 특성 및 표면 광택측정을 위해 Hull-cell 분석 및 도금표면분석을 수행하였다. Hull-cell 분석결과 glycine의 첨가량이 증가함에 따라 광택특성은 우수한 것으로 관찰되었으며, 표면광택성이 가장 우수한 도금조건으로는 $50^{\circ}C$, pH = 8의 조건에서 전전류 공급량 1 A로 1 min간 도금한 경우 음극전류밀도 $1A/dm^2$인 영역을 추천할 수 있었다. 동일조건의 pilot 실험을 $10{\mu}m$ 두께로 Ni하지 도금 후 Sn-Co 합금도금액 기본조성인 0.03 M $SnCl_{2}{\cdot}2H_{2}O$, 0.05 M $CoSO_{4}{\cdot}7H_{2}O$, 0.7 M $K_{4}P_{2}O_{7}$의 혼합 용액에서 수행하 였다. $0.2{\sim}0.6 {\mu}m$의 도금두께를 갖는 Sn-Co 합금도금 표면의 기계적 특성과 도금표면의 성분분석 결과 glycine의 첨가량이 15 g/L일 때 우수한 밀착성, 내식성, 내마모성을 보였다. 따라서 Sn-Co 합금도금공정에 glycine을 첨가한 용액을 크롬도금공정의 최적 도금용액으로 추천할 수 있었다.

무전해 도금을 적용한 결정질 실리콘 태양전지의 효율 향상

  • 정명상;장효식;송희은;강민구
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.686-686
    • /
    • 2013
  • Crystalline silicon solar cell is a semiconductor device that converts light into electrical energy. Screen printing is commonly used to form the front/back electrodes in silicon solar cell. Screen printing method is convenient but usually shows high resistance and low aspect ratio, which cause the efficiency decrease in crystalline silicon solar cell. Recently the plating method is applied in c-Si solar cell to reduce the resistance and improve the aspect ratio. In this paper, we investigated the effect of additional electroless Ag plating into screen-printed c-Si solar cell and compared their electrical properties. All wafers used in this experiment were textured, doped, and anti-reflection coated. The electrode formation was performed with screen-printing, followed by the firing step. Aften then we carried out electroless Ag plating by changing the plating time in the range of 20 sec~5 min and light intensity. The light I-V curve and optical microscope were measured with the completed solar cell. As a result, the conversion efficiency of solar cells was increased mainly due to the decreased series resistance.

  • PDF

젖음성 차이와 무전해도금을 이용한 연성 구리 회로패턴 형성 (Etchless Fabrication of Cu Circuits Using Wettability Modification and Electroless Plating)

  • 박상진;고태준;윤주일;문명운;한준현
    • 한국재료학회지
    • /
    • 제25권11호
    • /
    • pp.622-629
    • /
    • 2015
  • Cu circuits were successfully fabricated on flexible PET(polyethylene terephthalate) substrates using wettability difference and electroless plating without an etching process. The wettability of Cu plating solution on PET was controlled by oxygen plasma treatment and $SiO_x$-DLC(silicon oxide containing diamond like carbon) coating by HMDSO(hexamethyldisiloxane) plasma. With an increase of the height of the nanostructures on the PET surface with the oxygen plasma treatment time, the wettability difference between the hydrophilicity and hydrophobicity increased, which allowed the etchless formation of a Cu pattern with high peel strength by selective Cu plating. When the height of the nanostructure was more than 1400 nm (60 min oxygen plasma treatment), the reduction of the critical impalement pressure with the decreasing density of the nanostructure caused the precipitation of copper in the hydrophobic region.