• Title/Summary/Keyword: platform-based SoC design

Search Result 58, Processing Time 0.027 seconds

플랫폼을 기반으로 하는 SoC 설계 방법

  • 최규명;정의영;엄준형;어수관
    • The Magazine of the IEIE
    • /
    • v.30 no.9
    • /
    • pp.934-941
    • /
    • 2003
  • SoC(System on Chip)의 발전은 현재 널리 쓰이는 기존의 설계 방법론으로는 해결될 수 없는 여러 가지 문제들을 생성하고 있다. 제품의 복잡도는 급격히 증가하는 반면 제품 수명은 지속적으로 감소하고 있으며, 기존 구현 기술의 향상만으로는 해결하기 쉽지 않은 VDSM (Very Deep Sub-Micron) 문제 또한 새로이 도출되고 있는 실정이다. 이러한 문제들은 적기에 시장에 제품을 출시하는 데에 많은 어려움을 끼치게 되기 때문에, 기존의 방법론을 뛰어 넘는 새로운 설계 방법론을 위한 많은 연구들이 활발히 진행되고 있다. 이러한 방법론 중 효율적인 한 방안으로 "재사용"의 개념이 대두되고 있으며, platform-based design은 이러한 재사용의 개념을 SoC 설계에 효율적으로 적용할 수 있는 방법으로 많은 관심을 받고 있다. 본 논문은 이러한 platform-based design의 최근 동향 및 현재 삼성전자에서 추진하고 있는 platform-based design에 대해 기술한다.

  • PDF

A Study on Smart Device for Open Platform Ontology Construction of Autonomous Vihicles (자율주행자동차 오픈플랫폼 온톨로지 구축을 위한 스마트디바이스 연구)

  • Choi, Byung Kwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • The 4th Industrial Revolution, intelligent automobile application technology is evolving beyond the limit of the mobile device to a variety of application software and multi-media collective technology with big data-based AI(artificial intelligence) technology. with the recent commercialization of 5G mobile communication service, artificial intelligent automobile technology, which is a fusion of automobile and IT technology, is evolving into more intelligent automobile service technology, and each multimedia platform service and application developed in such distributed environment is being developed Accordingly, application software technology developed with a single system SoC of a portable terminal device through various service technologies is absolutely required. In this paper, smart device design for ontology design of intelligent automobile open platform enables to design intelligent automobile middleware software design technology such as Android based SVC Codec and real time video and graphics processing that is not expressed in single ASIC application software technology as SoC based application designWe have experimented in smart device environment through researches, and newly designed service functions of various terminal devices provided as open platforms and application solutions in SoC environment and applied standardized interface analysis technique and proved this experiment.

A Reconfigurable Image Processing SoC Based on LEON 2 Core (LEON 2 코어 기반 재구성 가능 영상처리 SoC 개발)

  • Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1418-1423
    • /
    • 2009
  • This paper describes the design and implementation of a System-on-a-Chip (SoC) for image processing applications to use in wearable/mobile products. The target Soc consists of LEON 2 core, AMBA/APB bus-systems and custom-designed controllers. A new FPGA-based prototyping platform is implemented and used for design and verification of the target SoC. To ensure that the implemented SoC satisfies the required performances, an image processing application is performed.

A Platform-Based SoC Design for Real-Time Stereo Vision

  • Yi, Jong-Su;Park, Jae-Hwa;Kim, Jun-Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.212-218
    • /
    • 2012
  • A stereo vision is able to build three-dimensional maps of its environment. It can provide much more complete information than a 2D image based vision but has to process, at least, that much more data. In the past decade, real-time stereo has become a reality. Some solutions are based on reconfigurable hardware and others rely on specialized hardware. However, they are designed for their own specific applications and are difficult to extend their functionalities. This paper describes a vision system based on a System on a Chip (SoC) platform. A real-time stereo image correlator is implemented using Sum of Absolute Difference (SAD) algorithm and is integrated into the vision system using AMBA bus protocol. Since the system is designed on a pre-verified platform it can be easily extended in its functionality increasing design productivity. Simulation results show that the vision system is suitable for various real-time applications.

SoC Platform기반 Design Methodology

  • Jang, Jun-Yeong;Han, Jin-Ho;Bae, Yeong-Hwan;Jo, Han-Jin
    • IT SoC Magazine
    • /
    • s.2
    • /
    • pp.34-38
    • /
    • 2004
  • 실리콘 처리 기술의 고속화 요구와 유무선 환경에서 동영상 통신이 가능한 비디오 폰, 영상 회의 시스템, 이동 통신용 단말기 등의 전자 제품 사용자의 급증은 시스템을 하나의 칩에 집적화하는 SoC(System-On-a-Chip) 설계 기술을 요구하고 있다. 칩의 복잡도와 SoC 제품의 생산성 차이가 계속적으로 증가함에 따라 현재의 IC 설계 방법으로는 SoC 제품의 성능과 요구의 변화를 만족시킬 수 없다. 칩의 면적을 최소화하고 성능을 최대화하며 게이트 수준의 최적화를 통한 기존의 셀 기반 설계 방법으로는 설계의 생산성 문제를 해결할 수 없다. 이러한 문제를 해결 위한 새로운 설계 방법인 IP 재사용을 기반으로 한 플랫폼 기반 설계가 제시되었다. 플랫폼 기반 설계는 SoC 제품을 빠르게 개발하기 위한 응용 기반 통합 플랫폼과 재사용이 가능한 IP(Intellectual Property) 이용한 플랫폼 기반 설계(Platform-Based Design) 방법이다. 새로운 설계 방법은 90% 이상의 IP 재사용을 통해서 설계 시간을 단축하며, 시스템 수준에서의 최적화를 통해서 제품의 시장 경쟁력(Time-to-Market)의 문제를 해결하기 위한 방법이다.

  • PDF

Design of Smart Frame SoC to support the IoT Services (IoT 서비스를 지원하는 Smart Frame SoC 설계)

  • Yang, Dong-hun;Hwang, In-han;Kim, A-ra;Guard, Kanda;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.503-506
    • /
    • 2015
  • In accordance with IoT(Internet of Things) commercialization, the need to design SoC-based hardware platform with wireless communication is increasing. This paper therefor proposes an SoC platform architecture with Smart Frame System inter-communicating between devices. Wireless communication functions and high-performance real-time image processing hardware structure was applied to existing digital photo frame. We developed a smart phone application to control the smart frame through Bluetooth communication. The SoC platform hardware consists of CIS controller, Memory controller, ISP(Image Signal Processing) module for image scaling, Bluetooth Interface for inter-communicating between devices, VGA/TFT-LCD controller for displaying video. The Smart Frame System to support the IoT services was implemented and verified using HBE-SoC-IPD test board equipped with Virtex4 XC4VLX80 FPGA. The operating frequency is 54MHz.

  • PDF

ASIC Design of OpenRISC-based Multimedia SoC Platform (OpenRISC 기반 멀티미디어 SoC 플랫폼의 ASIC 설계)

  • Kim, Sun-Chul;Ryoo, Kwang-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.281-284
    • /
    • 2008
  • This paper describes ASIC design of multimedia SoC Platform. The implemented Platform consists of 32-bit OpenRISC1200 Microprocessor, WISHBONE on-chip bus, VGA Controller, Debug Interface, SRAM Interface and UART. The 32-bit OpenRISC1200 processor has 5 stage pipeline and Harvard architecture with separated instruction/data bus. The VGA Controller can display RCB data on a CRT or LCD monitor. The Debug Interface supports a debugging function for the Platform. The SRAM Interface supports 18-bit address bus and 32-bit data bus. The UART provides RS232 protocol, which supports serial communication function. The Platform is design and verified on a Xilinx VERTEX-4 XC4VLX80 FPGA board. Test code is generated by a cross compiler' and JTAG utility software and gdb are used to download the test code to the FPGA board through parallel cable. Finally, the Platform is implemented into a single ASIC chip using Chatered 0.18um process and it can operate at 100MHz clock frequency.

  • PDF

Development and Verification of SoC Platform based on OpenRISC Processor and WISHBONE Bus (OpenRISC 프로세서와 WISHBONE 버스 기반 SoC 플랫폼 개발 및 검증)

  • Bin, Young-Hoon;Ryoo, Kwang-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.76-84
    • /
    • 2009
  • This paper proposes a SOC platform which is eligible for education and application SOC design. The platform, fully synthesizable and reconfigurable, includes the OpenRISC embedded processor, some basic peripherals such as GPIO, UART, debug interlace, VGA controller and WISHBONE interconnect. The platform uses a set of development environment such as compiler, assembler, debugger and RTOS that is built for HW/SW system debugging and software development. Designed SOC, IPs and Testbenches are described in the Verilog HDL and verified using commercial logic simulator, GNU SW development tool kits and the FPGA. Finally, a multimedia SOC derived from the SOC platform is implemented to ASIC using the Magnachip cell library based on 0.18um 1-poly 6-metal technology.

The Design of Multi-media SoC Platform Based on Core-A Processor (Core-A 프로세서 기반의 멀티미디어 SoC 플랫폼 설계)

  • Xu, Xuelong;Xu, Jingzhe;Jung, Seungpyo;Park, Jusung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.99-104
    • /
    • 2013
  • Recently smart devices which combine traditional electronic devices and personal computers, such as smart phones and smart TV, have caught people's eyes from all over the world. A multi-media SoC platform which embeds not only a calculating processor but also an operating system could provide an user-customized environment of several types of communication methods to PC or Internet. In this paper, we describe a multi-functioning SoC platform with video, audio and other communicating protocols based on Core-A processor and AMBA buses. To verify the designed multi-media SoC platform, JPEG decoding and ADPCM encoding/decoding algorithms are applied on it and the final decoding results are confirmed by video monitors and audio speakers.

Implementation and Verification of JPEG Decoder IP using a Virtual Platform (가상 플랫폼을 이용한 JPEG 디코더 IP의 구현 및 검증)

  • Jung, Yong-Bum;Kim, Yong-Min;Hwang, Chul-Hee;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.1-8
    • /
    • 2011
  • The requirement of a system-on-a-chip (SoC) design is increasing, which combines various and complex functional units on a single device. However, short time to market prohibits to release the device. To satisfy this shorter time-to-market, verification of both hardware and software at the same time is important. A virtual platform-based design method supports faster verification of these combined software and hardware by reusing pre-defined intellectual properties (IP). In this paper, we introduce the virtual platform-based design and redesign the existing ARM processor based S3C2440A system using the virtual platform-based method. In addtion, we implement and evaluate the performance of a JPEG decoder on the S3C2440A virtual platform. Furthermore, we introduce an optimized technique of the JPEG decoder using the ARM based inline assembly language, and then verify the performance improvement on the virtual platform. Such virtual platform-based design allows to verify both software and hardware at the same time and can meet the requirement of the shorter time-to-market.