• Title/Summary/Keyword: plates vibration

Search Result 871, Processing Time 0.022 seconds

The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.711-726
    • /
    • 2017
  • In the present work, by considering the agglomeration effect of single-walled carbon nanotubes, free vibration characteristics of functionally graded (FG) nanocomposite sandwich plates resting on Pasternak foundation are presented. The volume fractions of randomly oriented agglomerated single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. To determine the effect of CNT agglomeration on the elastic properties of CNT-reinforced composites, a two-parameter micromechanical model of agglomeration is employed. In this research work, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented straight CNTs. The 2-D generalized differential quadrature method (GDQM) as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The benefit of using the considered power-law distribution is to illustrate and present useful results arising from symmetric and asymmetric profiles. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the laminated FG nanocomposite plates are investigated. It is shown that the natural frequencies of structure are seriously affected by the influence of CNTs agglomeration. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated plates.

Dynamic behaviour of thick plates resting on Winkler foundation with fourth order element

  • Ozdemir, Yaprak I.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.359-368
    • /
    • 2019
  • This paper focuses on the study of dynamic analysis of thick plates resting on Winkler foundation. The governing equation is derived from Mindlin's theory. This study is a parametric analysis of the reflections of the thickness / span ratio, the aspect ratio and the boundary conditions on the earthquake excitations are studied. In the analysis, finite element method is used for spatial integration and the Newmark-${\beta}$ method is used for the time integration. While using finite element method, a new element is used. This element is 17-noded and it's formulation is derived from using higher order displacement shape functions. C++ program is used for the analyses. Graphs are presented to help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that the 17-noded finite element is used in the earthquake analysis of thick plates. It is shown that the changes in the aspect ratio are more effective than the changes in the aspect ratio. The center displacements of the reinforced concrete thick clamped plates for b/a=1, and t/a=0.2, and for b/a=2, and t/a=0.2, reached their absolute maximum values of 0.00244 mm at 3.48 s, and of 0.00444 mm at 3.48 s, respectively.

Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions

  • Benhenni, Mohammed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Abbes, Fazilay;Li, Yuming;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.535-549
    • /
    • 2019
  • This study aimed to develop a high-order shear deformation theory to predict the free vibration of hybrid cross-ply laminated plates under different boundary conditions. The equations of motion for laminated hybrid rectangular plates are derived and obtained by using Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle-ply laminates are obtained by using Navier's solution. To assess the validity of our method, we used the finite element method. Firstly, the analytical and the numerical implementations were validated for an antisymmetric cross-ply square laminated with available results in the literature. Then, the effects of side-to-thickness ratio, aspect ratio, lamination schemes, and material properties on the fundamental frequencies for different combinations of boundary conditions of hybrid composite plates are investigated. The comparison of the analytical solutions with the corresponding finite element simulations shows the good accuracy of the proposed analytical closed form solution in predicting the fundamental frequencies of hybrid cross-ply laminated plates under different boundary conditions.

Free Vibrations of Orthotropic Plates with Variable Thickness (가변 두께를 갖는 직교이방성 평행사변형판의 자유진동 해석)

  • Heo, Cheol-Weon;Moon, Duk-Hong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.49-57
    • /
    • 1986
  • The vibrations problem of thin orthotropic skew plates of linearly varying thickness is analyzed using the small deflection theory of plates. Using dimensionless oblique coordinates, the deflection surface can be expressed as a polyonmial series satisfying the boundary conditions. For orthotropic plates which is clamped on all the four edges, numerical results for the first two natural frequencies are presented for various combinations of aspect ratio, skew angle and taper parameter. The properties of material used are one directional glass fibre reinforced plastic GFRP. The results obtained may be summarised as follows: 1. In case of the first mode vibration of plates with increase in the skew angle, the natural frequencies of plates decrease. 2. As the aspect ratio decrease, the natural frequencies of plates decrease. 3. For the identical skew angle, natural frequencies of plates increase with the taper parameter of thickness.

  • PDF

The Effect of Constant Excitation on Nonlinear Interactions in Vibrating Modes of Circular Plates - Part 1. The Equations of Motion (상수 가진력항이 원판의 진동모드사이의 비선형 상호작용에 미치는 영향 - 제 1 보 운동방정식)

  • Lee, Won-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.716-720
    • /
    • 2006
  • In order to examine the effect of constant excitation on nonlinear interactions in vibrating modes of circular plates, we added a constant term to a harmonic excitation. A two-degree-of freedom system is derived by using the Galerkin's procedure. The system is shown to have quadratic and cubic nonlinearities subjected to a harmonic excitation.

  • PDF

Vibration Analysis of Plates with Openning about Variation Ratio (변단면률의 변화에 대한 개구부를 갖는 판의 진동해석)

  • Kim, Il-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1177-1180
    • /
    • 2007
  • This paper has the objects of deciding dynamic instability regions of thick plates by finite element method and providing kinematic design data for mats and slabs of building structures. In this paper, dynamic stability analysis of tapered opening thick plate is done by use of Serendipity finite element with 8 nodes considering shearing strain of plate. To verify this finite element method, buckling stress and natural frequencies of thick pate with or without in-plane stress are compared with existing solutions. The results are as follow that this finite element solutions with $4{\times}4$ meshes are shown the error of maximum 0.56% about existing solutions, and obtained dynamic instability graph according with variation of opening positions.

  • PDF

Structural Intensity Analysis of Plate Structures Using Modal Analysis (모달해석기법을 이용한 판 구조물의 진동인텐시티 해석)

  • 정상민;조대승;김사수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.319-326
    • /
    • 1998
  • Structural intensity of plates experiencing bending vibration is analytically evaluated using the modal analysis based on the assumed mode method. In the analysis, material internal loss and localized damping are considered. The power obtained by structural intensity integration over the circle containing the excitation source is compared with the power injected into plates to verify the accuracy of the presented method and; to evaluate the convergence of mode superposition. The intensity integration is carried out varying the circle radius and the integral step to investigate their effects in case of the power estimation using structural intensities. In addition, the dominant component among internal forces in the energy transfer by the bending vibration of a stiffened plate is investigated.

  • PDF

Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control using Gradient Method (구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화)

  • 강영규;박현철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.684-688
    • /
    • 1998
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping. It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing tie SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

Transfer Function of Structure-borne Noise to Underwater Radiated Noise (고체음의 수중방사소음 전달함수)

  • 김재승;김현실;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.138-142
    • /
    • 2001
  • A comparison between theoretical and measured transfer function, which relates structure-borne noise source level to underwater radiated noise, of a naval ship is presented in this study. Transfer functions are obtained by dividing far field underwater noise by the value of structure borne noise source levels below machinery mounts. In prediction, statistical energy analysis of the whole ship structure is used to get vibration levels of wetted hull plates below water line. Then, far field radiated noise is calculated by summing up contributions from each plates using vibration levels and radiation efficiencies. And 1/3-octave band underwater sound pressure at the distance of 1 m away from the hull were measured to get experimental transfer functions. The two transfer functions are compared to show resonable agreements in spite of the subtle physical differences between each other.

  • PDF

Application of Simple Method of Vibration Analysis to the Simply Supported Sandwich Panels with Point Mass/Masses (첨가된 질량이 있는 단순지지된 샌드위치 패널에 대한 간편한 진동해석의 적용)

  • Lee, Jung-ho;Kim, Seong-Hwan;Jung, Kyoung-il;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.139-145
    • /
    • 1996
  • Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special othotropic plates. A method of calculating the natural frequency corresponding to the first mode of vibration of beam and tower structures with irregular cross-sections was developed and reported by D. H. Kim in 1974. Since 1989, The author has extended this method to Vibration analysis of two dimensional problems including composite laminates, and has reported at several conferenes. Frequently, the bridge floor panels are supported by girders and cross beams. Such panels as well as some of the building floor panels can be assumed as simple supported special orthotropic plates. In this paper, the result of application of simple method of vibration analysis developed by D. H. Kim, to the simply supported sandwich panels with point Mass/Masses is presented.

  • PDF