• Title/Summary/Keyword: plates vibration

Search Result 871, Processing Time 0.023 seconds

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • 최재성;길현권;홍석윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

Eigenfrequencies of simply supported taper plates with cut-outs

  • Kalita, Kanak;Haldar, Salil
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.103-113
    • /
    • 2017
  • Free vibration analysis of plates is necessary for the field of structural engineering because of its wide applications in practical life. Free vibration of plates is largely dependent on its thickness, aspect ratios, and boundary conditions. Here we investigate the natural frequencies of simply supported tapered isotropic rectangular plates with internal cutouts using a nine node isoparametric element. The effect of rotary inertia on Eigenfrequencies was demonstrated by calculating with- and without rotary inertia. We found that rotary inertia has a significant effect on thick plates, while rotary inertia term can be ignored in thin plates. Based on comparison with literature data, we propose that the present formulation is capable of yielding highly accurate results. Internal cutouts at various positions in tapered rectangular simply supported plates were also studied. Novel data are also reported for skew taper plates.

An asymptotic analysis on non-linear free vibration of squarely-reticulated circular plates

  • Nie, G.H.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.547-560
    • /
    • 1999
  • In this paper an asymptotic iteration method is adopted to analyze non-linear free vibration of reticulated circular plates composed of beam members placed in two orthogonal directions. For the resulting linear ordinary differential equations in the process of iteration, the power series with rapid convergence has been applied to obtain an analytical solution for non-linear characteristic relation between the amplitude and frequency of the structure. Numerical examples are given, and the phenomena indicating hardening of such structures have been presented for the (immovable or movable) simply-supported and clamped circular plates.

Free Vibration Analysis of Arbitrarily Shaped Plates with Free Edges Using Non-dimensional Dynamic Influence Functions (무차원 동영향 함수를 이용한 자유단 경계를 가진 임의 형상 평판의 자유진동해석)

  • 강상욱;김일순;이장무
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.821-827
    • /
    • 2003
  • The so-called boundary node method (or NDIF method) that was developed by the authors has been extended for free vibration analysis of arbitrarily shaped plates with free edges. Since the proposed method requires no interpolation functions. no integration Procedure is needed on boundary edges of the plates and only a small amount of numerical calculation is involved, compared with FEM and BEM. In order to explain tile reason why spurious eigenvalues are generated when the NDIF method is applied to free plates, the NDIF method has been considered for free vibration analysis of both a fixed string and a free beam. Finally, verification examples show that natural frequencies obtained by the present method agree well with those given by an exact method or a numerical method (ANSYS).

Vibration Analysis of Rotating Cantilever Plates with a Concentrated Mass (집중 질량을 가진 회전하는 외팔 평판의 진동 해석)

  • 양정식;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.181-186
    • /
    • 1998
  • A modelling method for the vibration analysis of rotating cantilever plates with a concentrated mass is presented. The equations of motion for the rotating plates with a concentrated mass located in an arbitrary position are derived. For the modelling of the concentrated mass, a mass density Dirac delta function is used. The effects of concentrated mass and its location, angular speed, and hub radius of the rotating plate on the natural frequencies are studied. Particularly, mode shape variations due to some parameter variations are investigated.

  • PDF

Nonlinear Vibration Analysis of Rotating Composite Plates Based on a Refined Plate Theory (개선된 판이론을 이용한 회전하는 복합재료 적층판의 비선형 진동해석)

  • 나형진;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.173-176
    • /
    • 1997
  • A refined plate theory including the effects of transverse shearing is used to predict the free vibration frequencies, mode shapes and stress distributions in spinning laminated composite plates. In this theory, the displacements are expressed by trigonometric series representation through the thickness. In the series for the displacements only the first few terms are retained. The model is validated by comparing the results for isotropic plates with those available in the literature.

  • PDF

Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation

  • Ozdemir, Y.I.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.213-222
    • /
    • 2018
  • The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using Mindlin's theory with shear locking free fourth order finite element, to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency paramerets of thick plates subjected to free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the free vibration analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • Kil, H.G.;Choi, J.S.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.301-308
    • /
    • 2000
  • The power flow analysis(PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrry direction. The energy governing equations for longitudinal, shear and flexural waves were solved to predict the vibrational energy density and intensity. The wave transmission approach was used to consider the mode conversion at the joints of the coupled plates. Numerical results for energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

Free transverse vibration of shear deformable super-elliptical plates

  • Altekin, Murat
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.307-331
    • /
    • 2017
  • Free transverse vibration of shear deformable super-elliptical plates with uniform thickness was studied based on Mindlin plate theory using finite element method. Quadrilateral isoparametric elements were used in the paper. Sensitivity analysis was made to determine the influence of the thickness, the aspect ratio, and the shape of the plate on the natural frequency. Accuracy of the results computed in the current study was validated by comparing them with the solutions available in the literature. The results reveal that the frequencies of clamped super-elliptical plates lie in the range bounded by elliptical and rectangular plates irrespective of the aspect ratio, and furthermore, the frequency decreases if the super-elliptical power increases. A similar trend was observed for simply supported plates with high aspect ratio. The free vibration response for the first and the second symmetric-antisymmetric (SA) modes were found to be different for high aspect ratio. The results reveal that using insufficient number of degrees of freedom results in finding a totally different relation between the super-elliptical power and the frequency.

3-D Vibration analysis of FG-MWCNTs/Phenolic sandwich sectorial plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.649-662
    • /
    • 2018
  • In this study, based on the three-dimensional theory of elasticity, free vibration characteristics of sandwich sectorial plates with multiwalled carbon nanotube-(MWCNT)-reinforced composite core are considered. Modified Halpin-Tsai equation is used to evaluate the Young's modulus of the MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. In this paper, free vibration of thick functionally graded sandwich annular sectorial plates with simply supported radial edges and different circular edge conditions including simply supported-clamped, clamped-clamped, and free-clamped is investigated. A semi-analytical approach composed of two-dimensional differential quadrature method and series solution are adopted to solve the equations of motion. The material properties change continuously through the core thickness of the plate, which can vary according to a power-law, exponentially, or any other formulations in this direction. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated sectorial plates.