• Title/Summary/Keyword: plates vibration

Search Result 871, Processing Time 0.043 seconds

Vibration of angle-ply laminated composite circular and annular plates

  • Mercan, Kadir;Ebrahimi, Farzad;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.141-154
    • /
    • 2020
  • In the present paper, free vibration analysis of angle-ply laminated composite annular and circular plates is performed by numerical methods. First-order shear deformation plate theory is used for kinematic relations. The related governing equations of motion are discretized via differential quadrature and discrete singular convolution methods. Frequency values are obtained for different lamina scheme, thickness-to-radius ratio, and mode numbers. The advantages and accuracy of these two methods are also tested in detail.

Vibration frequencies for elliptical and semi-elliptical Mindlin plates

  • Wang, C.M.;Xiang, Y.;Kitipornchai, S.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.35-48
    • /
    • 1995
  • This paper presents new frequency results for elliptical and semi-elliptical Mindlin plates of various aspect ratios, thicknesses and boundary conditions. The results were obtained using the recently developed computerized Rayleigh-Ritz method for thick plate analysis. For simply supported elliptical plates, it is proposed that the penalty function method be used to enforce the condition of zero rotation of the midplane normal in the tangent plane to the plate boundary.

An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper an efficient and simple refined shear deformation theory is presented for the free vibration of Functionally Graded Plates Under Various Boundary Conditions. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The plates are considered of the type having two opposite sides simply-supported, and the two other sides having combinations of simply-supported, clamped, and free boundary conditions. The mechanical properties of functionally graded material are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived using Hamilton's principle. The results of this theory are compared with those of other shear deformation theories. Various numerical results including the effect of boundary conditions, power-law index, plate aspect ratio, and side-to-thickness ratio on the free vibration of FGM plates are presented.

Vibration of antisymmetric angle-ply laminated plates under higher order shear theory

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Karthik, K.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1281-1299
    • /
    • 2016
  • This paper deals with the analysis of vibration of antisymmetric angle-ply plates using spline method for higher order shear theory. Free vibration of laminated plates is addressed to show the capability of the present method in the vicinity of higher order shear deformation theory and simply supported edges of plates. The coupled differential equations are obtained in terms displacement and rotational functions. These displacement and rotational functions are approximated using cubic and quantic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The antisymmetric angle-ply fiber orientation are taken as design variables. Numerical results enable us to examine the frequencies for various geometric and material parameters and accuracy and effectiveness of the proposed method is also verified by comparative study.

A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates

  • Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.223-240
    • /
    • 2015
  • In this work, a nonlocal quasi-3D trigonometric plate theory for micro/nanoscale plates is proposed. In order to introduce the size influences, the Eringen's nonlocal elasticity theory is utilized. In addition, the theory considers both shear deformation and thickness stretching effects by a trigonometric variation of all displacements within the thickness, and respects the stress-free boundary conditions on the top and bottom surfaces of the plate without considering the shear correction factor. The advantage of this theory is that, in addition to considering the small scale and thickness stretching effects (${\varepsilon}_z{\neq}0$), the displacement field is modelled with only 5 unknowns as the first order shear deformation theory (FSDT). Analytical solutions for vibration of simply supported micro/nanoscale plates are illustrated, and the computed results are compared with the available solutions in the literature and finite element model using ABAQUS software package. The influences of the nonlocal parameter, shear deformation and thickness stretching on the vibration behaviors of the micro/nanoscale plates are examined.

Analysis of stiffened Al/SiC FGM plates with cutout under uniaxial and localized in-plane edge loadings

  • P. Balaraman;V.M. Sreehari
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.601-615
    • /
    • 2024
  • Effect of ring and straight stiffeners in the buckling as well as vibration characteristics of metal-ceramic functionally graded plates with cutout subjected to various uniaxial and localized in-plane compressive edge loadings was explored in the present work. In the current work, the distinguishing characteristics of metal and ceramic are merged in a single volume, and power law was used for estimating the material composition throughout thickness. Buckling and free vibration characteristics were studied initially for unstiffened Al/SiC functionally graded plates with cutout. Subsequently, the influence of cutout ratio on buckling load as well as natural frequency for different power law indices was discussed. The functionally graded plate was stiffened by three different stiffener patterns, namely; ring stiffener, straight stiffener, as well as a combination of the ring and the straight stiffener, to enhance the buckling as well as vibration characteristics. The effect of stiffener depth ratio for different stiffener patterns was also presented for functionally graded plates having different cutout sizes under various loading conditions. Such studies on functionally graded material have potential applications in a variety of technological fields including the aerospace and defense sectors.

Design and Experiment of an Electromagnetic Vibration Exciter for the Rapping of an Electrostatic Precipitator

  • Kim, Je-Hoon;Kim, Jin-Ho;Jeong, Sang-Hyun;Han, Bang-Woo
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • The miniaturization of an electrostatic precipitator has become a key element in successfully constructing an efficient electrostatic precipitator because of the limited space allowed for installation in a subway tunnel. Therefore, the miniaturization of the rapping system of the electrostatic precipitator has also become important. This research proposes a resonant-type electromagnetic vibration exciter as a vibrating rapper for an electrostatic precipitator. The compact vibrating rapper removes collected dust from the collecting plates without direct impact on those collecting plates. To characterize the dynamic performance of the electromagnetic vibration exciter, finite element analysis was performed using a commercial electromagnetic analysis program, MAXEWLL. Moreover, we analyzed the resonant frequency of an electrostatic precipitator, to which the electromagnetic vibration exciter was applied, by ANSYS. Also, to measure the acceleration generated by the electromagnetic vibration exciter, we manufactured a prototype of the ESP and electromagnetic vibration exciter and measured its acceleration at the resonant frequency.

Experimental Modal Analysis of Perforated Rectangular Plates Submerged in Water (물에 잠긴 다공 직사각평판의 실험적 모드 해석)

  • Yoo, Gye-Hyoung;Lee, Myung-Gyu;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.416-421
    • /
    • 2002
  • This paper dealt with an experimental study on the hydro-elastic vibration of clamped perforated rectangular plates submerged in water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 1.750, 2.125, 2.500, 3.000 and 3.750. The natural frequencies of the perforated plates in air were obtained by the analytical method based n the relation between the reference kinetic and maximum potential energy and compared with the experimental results. Good agreement between the results was found for the natural frequencies of the perforated plates in air. It was empirically found that the natural frequencies of the perforated plate in air increase with an increase of P/D, on the other hand, the natural frequencies of the perforated plate in contact with water decrease with an increase of P/D. Additionally, the effect of the submerged depth on the natural frequency was investigated.

  • PDF

Viscoelastic Bending, Vibration and Buckling Analysis of Laminated Composite Plates on Two-parameter Elastic Foundation (2개 매개변수를 갖는 탄성지반위에 놓인 복합재료 적층판의 점탄성적 휨, 진동 좌굴해석)

  • Han, SungCheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.443-455
    • /
    • 2001
  • An energy method has been used for an elastic formulation of bending vibration and buckling analysis of laminated composite plates on two-parameter elastic foundations. A quasi-elastic method is used for the solution of viscoelastic analysis of the laminated composite plates. The third-order shear deformation theory is applied by using the double-fourier series. To validate the derived equations the obtained displacements for simply supported orthotropic plates on elastic foundations are compared with those of LUSAS program Numerical results of the viscoelastic bending vibration and buckling analysis are presented to show the effects of layup sequence number of layers material anisotropy and shear modulus of foundations.

  • PDF

Effect of Water Level on the Hydroelastic Vibration of Two Rectangular Plates Coupled with Water (물로연성된 두 직사각평판의 접수진동에 대한 수위의 영향)

  • Yoo, Gye-Hyoung;Kwon, Tae-Kyu;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.839-844
    • /
    • 2003
  • The effect of water level on the free vibration of a partially water-filled two rectangular plates structure was investigated by experimental modal analysis and finite element analysis using ANSYS computer program. Modal parameters of two rectangular plates coupled with water were obtained by means of experiment and the FEM solutions were compared with the experimental solutions to verify the finite element model. As a result, the comparison between the experiment and FEM results showed excellent agreement. The transverse vibration modes, in-phase and out-of-phase, were observed alternately in the fluid-coupled system. The effect of water level and water gap size on the fluid-coupled natural frequency were investigated. It was found that the natural frequency of the partially water-filled two rectangular plates are not proportional to the water level, but depend on mode number of plates.

  • PDF