• Title/Summary/Keyword: plate type rolling

Search Result 24, Processing Time 0.02 seconds

A Study on Forming Characteristics in Plate Type Cross Rolling Process (평판형 전조압연의 성형특성 연구)

  • Yoon D. J.;Lee G. A.;Lee N. K.;Choi S.;Lee H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.329-332
    • /
    • 2005
  • Cross rolling process is one of incremental forming processes to form an axi-symmetric shaped metal component. It can be classified into two types according to the shape of dies, which are a drum type (roll type) and a plate type (straight type). It can also be classified into a wedge type and a ramp type processes according to deformation characteristics of a material. The ramp type die is applied to plate type cross rolling process in cold forming process for forming of teeth of gear or bolt, while the wedge type die is generally utilized to drum type and plate type cross rolling processes in hot forming process. A shape of the ramp type die is usually same as final shape of a product at every section of a progressing direction, while the shape of the wedge type die has different shapes in a progressing direction. In this paper, a rolling of neck part in a ball stud component has been carried out using the plate type cross rolling process with a ramp shaped die. Forming characteristics have been performed using finite element analysis in order to obtain a proper preform for the ramp type plate cross rolling process.

  • PDF

A Study on the Rolling Friction Characteristics of Large Scale Roller Shoe for Bridge Supporter (교량받침용 대형 Roller Shoe의 구름마찰특성에 관한 연구)

  • 김영득;김재철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.660-663
    • /
    • 2001
  • There is a mechanical device between the superstructure and substructure of a bridge, which transmit vertical load of superstructure to the substructure and absorb horizontal displacement of super structure due to thermal, dynamic, load, etc. In order to meet two requirements at once, the structure of roller between plates is widely used, and this roller between plates is widely used, and this roller shoe system is known to have smaller horizontal movement resistance than any other type of bridge shoe. In this study, rolling friction resistance characteristics of roller-plate friction system is investigated according to roller dimension, vertical load, hardness and roughness of roller and plate. On the base of the results, the rolling friction resistance of large scale roller shoe is evaluated using model experiment.

  • PDF

Recent Trend in Hot Rolling Technology of Steels (강판 열간압연의 기술개발 동향)

  • 신수철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.3-9
    • /
    • 1999
  • The recent technical trend in hot rolling of steel can be described as process and product technologies which have been progressed with modern mill equipment and computers. Precise gauge and width control can be achieved by up-to-date control methods such as AGC and AWC systems. Roll benders and various shape control systems enabled high quality flatness and crown control. Mills can produce higher tensile materials by new process based on process metallurgy. The use of high speed steel rolls and on line roll grinders make the schedule free rolling easier which results in cost saving. Process itself goes toward continuous and simple flow type which has lower operation. Endless rolling and strip casting are examples of the trend. Materials with higher tensile strength and various functions have been developed in last years to meet the customer's needs and this trend will continue.

  • PDF

Development of the Rolling-cylinder Type Motor-driven Total Artificial Heart System

  • Min, Byoung-G.;Kim, Hee-C.;Cheon, Gill-J.
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.161-170
    • /
    • 1987
  • A new type of motor-driven total artificial heart system with a rolloing-cylinder mechanism has been developed. The prototype system consists of a brushless DC motor inside of a rolling-cylinder, two arc shaped pusher-plate s, and two ventricles of smooth, seamless polyurethane sacs. The motor-driven pump has the advantages of being portable and quiet compared to the present air-driven pump. It can also be controlled more accurately. This rolling-cylinder type electromechanical pump has several structural advantages including small size and weight, as compared to other research groups' motor-driven pumps. The results of mock circulation tests confirm sufficient pump output capacity(cardiac output . 9 L/min, at aortic pressure'120mmHg, with heart rate . 120 BPM) for animal implantation of our prototype system.

  • PDF

IGBT VVVF INVERTER AS A PROPULSION SYSTEM FOR ELECTRIC CAR (전동차 견인용 IGBT VVVF 인버터)

  • Chung, E.S.;Park, Y.H.;Jang, K.H.;Lee, S.J.;Bae, B.H.;Kim, J.S.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.373-375
    • /
    • 1997
  • In this paper, we present IGBT VVVF inverters as a 1C1M propulsion system for electric car. These inverters are composed of high power IGBT's and controlled by compact control units. The control unit performs full digital control by using 32bit DSP and microcontroller. By using CAN-bus, high speed network is constructed within four control units. The stack is simplified and optimized by using plate bus and IGBT driver units of hybrid-type.

  • PDF

Properties of Defect Initiation and Fatigue Crack Growth in Manufacturing Process of Bearing Metal (베어링메탈 제조공정에 따른 결함발생 및 피로균열 전파특성)

  • Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.3-8
    • /
    • 2015
  • A study has been made on defects which are formed in manufacturing processes of engine bearing and also on fatigue crack growth behavior in each step of bearing metal manufacturing. After the first step(sinter brass powder on steel plate ; Series A) many voids are made on brass surface and its size is decreased by the second step(rolling process of sintered plate ; Series B). After the third step(re-sintering step of brass powder and rolling ; Series C) the number of voids is decreased and its type shows line. The time of fatigue crack initiation and the growth rate of fatigue crack are in order of Series A, Series B, Series C. These reasons are that void fosters the crack initiation and growth, and residual stress made by rolling process effects on the crack growth rate in Series B, C. In forming and machining processes by use of final bearing metal, crack was observed at internal corner of flange and peeling off was observed at junction between steel and brass. Owing to the above crack and peeling off, it is considered that there is a possibility of fatigue fracture during the application time.

  • PDF

Defect Genesis and Fatigue Failure Behaviour of Bearing Metal in Manufacturing Processes (제조 공정에 따른 베어링메탈의 결함발생 및 피로파괴거동)

  • Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.45-51
    • /
    • 2011
  • A study has been made on defects which are formed in manufacturing processes of engine bearing and also on fatigue crack growth behavior in each step of bearing metal manufacturing. After the first step (sinter brass powder on steel plate ; Series A) many voids are made on brass surface and its size is decreased at the second step (rolling process of sintered plate ; Series B). After the third step (re-sintering step of brass powder and rolling ; Series C) the number of voids is decreased and its type shows line. The time of fatigue crack initiation and the growth rate of fatigue crack are in order of Series A, Series B, Series C. These reasons are that void fosters the crack initiation and growth, and residual stress made by rolling process affects on the crack growth rate in Series B, C. In forming and machining processes by use of final bearing metal, crack was observed at internal corner of flange and peeling off was observed at interface between steel and brass. Owing to the above crack and peeling off, it is considered that there is a possibility of fatigue fracture during the application time.

  • PDF

Soil Stress Analysis Using Discrete Element Method for Plate-Sinkage Tests (DEM 모델을 이용한 평판재하시험의 토양 수직응력 해석)

  • Jang, Gichan;Lee, Soojin;Lee, Kyu-Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.230-237
    • /
    • 2015
  • Soil deformation on the off-load ground is significantly affected by soil conditions, such as soil type, water content, and etc. Thus, the soil characteristics should be estimated for predicting vehicle movements on the off-load conditions. The plate-sinkage test, a widely-used experimental test for predicting the wheel-soil interaction, provides the soil characteristic parameters from the relationship between soil stress and plate sinkage. In this study, soil stress under the plate-sinkage situation is calculated by the DEM (Discrete Element Method) model. We developed a virtual soil bin with DEM to obtain the vertical reaction forces under the plate pressing the soil surface. Also parametric studies to investigate effects of DEM model parameters, such as, particle density, Young's modulus, dynamic friction, rolling friction, and adhesion, on the characteristic soil parameters were performed.

Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling

  • Won, Jong Woo;Kang, Minju;Kwon, Heoun-Jun;Lim, Ka Ram;Seo, Seong Moon;Na, Young Sang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1432-1437
    • /
    • 2018
  • This work investigated edge-cracking behavior of equiatomic CoCrFeMnNi high-entropy alloy during hot rolling at rolling temperatures $500{\leq}T_R{\leq}1000^{\circ}C$. Edge cracks did not form in the material rolled at $500^{\circ}C$, but widened and deepened into the inside of plate as $T_R$ increased from $500^{\circ}C$. Edge cracks were most severe in the material rolled at $1000^{\circ}C$. Mn-Cr-O type non-metallic inclusion and oxidation were identified as major factors that caused edge cracking. The inclusions near edge region acted as preferential sites for crack formation. Connection between inclusion cracks and surface cracks induced edge cracking. Rolling at $T_R{\geq}600^{\circ}C$ generated distinct inclusion cracks whereas they were not serious at $T_R=500^{\circ}C$, so noticeable edge cracks formed at $T_R{\geq}600^{\circ}C$. At $T_R=1000^{\circ}C$, significant oxidation occurred at the crack surface. This accelerated edge crack penetration by embrittling the crack tip, so severe edge cracking occurred at $T_R=1000^{\circ}C$.