DOI QR코드

DOI QR Code

Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling

  • Won, Jong Woo (Metal Materials Division, Korea Institute of Materials Science) ;
  • Kang, Minju (Metal Materials Division, Korea Institute of Materials Science) ;
  • Kwon, Heoun-Jun (Metal Materials Division, Korea Institute of Materials Science) ;
  • Lim, Ka Ram (Metal Materials Division, Korea Institute of Materials Science) ;
  • Seo, Seong Moon (Metal Materials Division, Korea Institute of Materials Science) ;
  • Na, Young Sang (Metal Materials Division, Korea Institute of Materials Science)
  • 투고 : 2018.04.10
  • 심사 : 2018.04.18
  • 발행 : 2018.11.20

초록

This work investigated edge-cracking behavior of equiatomic CoCrFeMnNi high-entropy alloy during hot rolling at rolling temperatures $500{\leq}T_R{\leq}1000^{\circ}C$. Edge cracks did not form in the material rolled at $500^{\circ}C$, but widened and deepened into the inside of plate as $T_R$ increased from $500^{\circ}C$. Edge cracks were most severe in the material rolled at $1000^{\circ}C$. Mn-Cr-O type non-metallic inclusion and oxidation were identified as major factors that caused edge cracking. The inclusions near edge region acted as preferential sites for crack formation. Connection between inclusion cracks and surface cracks induced edge cracking. Rolling at $T_R{\geq}600^{\circ}C$ generated distinct inclusion cracks whereas they were not serious at $T_R=500^{\circ}C$, so noticeable edge cracks formed at $T_R{\geq}600^{\circ}C$. At $T_R=1000^{\circ}C$, significant oxidation occurred at the crack surface. This accelerated edge crack penetration by embrittling the crack tip, so severe edge cracking occurred at $T_R=1000^{\circ}C$.

키워드

과제정보

연구 과제 주관 기관 : Korean Institute of Materials Science (KIMS), National Research Foundation of Korea (NRF)

참고문헌

  1. K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na, J. Alloys Compd. 728, 1235 (2017) https://doi.org/10.1016/j.jallcom.2017.09.089
  2. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014) https://doi.org/10.1126/science.1254581
  3. Y. Zhao, D.H. Lee, M.Y. Seok, J.A. Lee, M.P. Phaniraj, J.Y. Suh, H.Y. Ha, J.Y. Kim, U. Ramamurty, J. Jang, Scr. Mater. 135, 54 (2017) https://doi.org/10.1016/j.scriptamat.2017.03.029
  4. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375, 213 (2004)
  5. F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743 (2013) https://doi.org/10.1016/j.actamat.2013.06.018
  6. B. Dodd, P. Boddington, J. Mech. Work. Technol. 3, 239 (1980) https://doi.org/10.1016/0378-3804(80)90045-5
  7. P. Lan, H. Tang, J. Zhang, Mater. Sci. Eng. A 660, 127 (2016) https://doi.org/10.1016/j.msea.2016.02.086
  8. M.H. Han, S. Lee, N.J. Kim, K.J. Lee, T. Chung, G. Byun, Mater. Sci. Eng. A 264, 47 (1999) https://doi.org/10.1016/S0921-5093(98)01114-9
  9. H.B. Xie, Z.Y. Jiang, W.Y.D. Yuen, Fatigue Fract. Eng. Mater. Struct. 36, 1130 (2013) https://doi.org/10.1111/ffe.12102
  10. B. Hwang, H.S. Lee, Y.G. Kim, S. Lee, Mater. Sci. Eng. A 402, 177 (2005) https://doi.org/10.1016/j.msea.2005.04.045
  11. S.S. Sohn, B.J. Lee, J.H. Kwak, S. Lee, Metall. Mater. Trans. A 45, 3844 (2014) https://doi.org/10.1007/s11661-014-2332-z
  12. A. Gali, E.P. George, Intermetallics 39, 74 (2013) https://doi.org/10.1016/j.intermet.2013.03.018
  13. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Mater. Des. 133, 122 (2017) https://doi.org/10.1016/j.matdes.2017.07.054
  14. N.D. Stepanov, D.G. Shaysultanov, NYu. Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, M.A. Tikhonovsky, Mater. Sci. Eng. A 636, 188 (2015) https://doi.org/10.1016/j.msea.2015.03.097
  15. M. Ganesan, D. Dye, P.D. Lee, Metall. Mater. Trans. A 36, 2191 (2005) https://doi.org/10.1007/s11661-005-0338-2
  16. I. Mejia, A. Boulaajaj, J. Calvo, J.M. Cabrera, Mater. Sci. Eng. A 611, 77 (2014) https://doi.org/10.1016/j.msea.2014.05.072
  17. A.S. Hamada, L.P. Karjalainen, Mater. Sci. Eng. A 528, 1819 (2011) https://doi.org/10.1016/j.msea.2010.11.030
  18. M. Kang, J.W. Won, K.R. Lim, H.-J. Kwon, S.M. Seo, Y.S. Na, Metals 8, 54 (2018) https://doi.org/10.3390/met8010054
  19. F. Otto, A. Dlouhy, K.G. Pradeep, M. Kubenova, D. Raabe, G. Eggeler, E.P. George, Acta Mater. 112, 40 (2016) https://doi.org/10.1016/j.actamat.2016.04.005
  20. B. Schuh, F. Mendez-Martin, B. Volker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96, 258 (2015) https://doi.org/10.1016/j.actamat.2015.06.025
  21. P. Rocabois, J. Lehmann, H. Gaye, M. Wintz, J. Cryst. Growth 199, 838 (1999)
  22. I.H. Jung, Solid State Ion. 177, 765 (2006) https://doi.org/10.1016/j.ssi.2006.01.012
  23. S.W. Song, Y.J. Kwon, T. Lee, C.S. Lee, Mater. Sci. Eng. A 677, 421 (2016) https://doi.org/10.1016/j.msea.2016.09.082
  24. Z.X. Gui, W. Kai, Y.S. Zhang, Z. Bin, Appl. Surf. Sci. 316, 595 (2014) https://doi.org/10.1016/j.apsusc.2014.08.043
  25. M. Hasegawa, in Treatise on Process Metallurgy, 1st edn., ed. by S. Seetharaman (Elsevier, Amsterdam, 2013), p. 508
  26. C.H. Park, C.S. Oh, S. Kim, Mater. Sci. Eng. A 542, 127 (2012) https://doi.org/10.1016/j.msea.2012.02.042

피인용 문헌

  1. Phase Transformation Kinetics of a FCC Al0.25CoCrFeNi High-Entropy Alloy during Isochronal Heating vol.8, pp.12, 2018, https://doi.org/10.3390/met8121015
  2. Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy vol.9, pp.None, 2018, https://doi.org/10.1038/s41598-019-42704-x
  3. Corrosion and Thermal Stability of CrMnFeNi High Entropy Alloy in Molten FLiBe Salt vol.9, pp.1, 2018, https://doi.org/10.1038/s41598-019-55653-2
  4. Dissimilar Metal Joining of 304 Stainless Steel to SMA490BW Steel Using the Filler Metal Powders with a High-Entropy Design vol.26, pp.6, 2018, https://doi.org/10.1007/s12540-019-00400-5
  5. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys vol.76, pp.None, 2021, https://doi.org/10.1016/j.jmst.2020.10.038