• Title/Summary/Keyword: plate plasma

Search Result 272, Processing Time 0.026 seconds

Simulation of Magnetic Field and Removal Characteristic of Nitrogen Oxide Using Wire-Plate Type Plasma Reactor (선 대 평판형 플라즈마 반응기를 이용한 자계 시뮬레이션과 질소산화물제거 특성)

  • 이현수;박재윤
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.407-411
    • /
    • 2003
  • The purpose of this paper is to study the removal of nitrogen oxide(NOx) using a wire-plate type plasma reactor with magnet attached for indoor air purification. In order to produce a more effective reactor, we conducted magnetic field simulations. The results of the magnetic field simulations show that NOx can be removed more effectively. The results from the magnetic field simulation show that when 7 magnets were applied to the reactor, the magnetic flux density was at its highest amount than when using 0, 3, or 5 magnets. From the data obtained by the simulation results a plasma reactor was made and thus, several experiments were conducted. The best removal efficiency was obtained with 14 W AC power to the reactor with 5 magnets.

Effect of Magnetic Field on NOx Removal for Wire-Plate Plasma Reactor (선대 평판형 플라즈마 반응기에서 NOx 제거에 미치는 자계의 영향)

  • Park, J.Y.;Son, S.D.;Han, S.B.;Lee, D.H.;Kim, J.D.;Mun, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2251-2252
    • /
    • 1999
  • In this paper, the effect of magnetic field was measured on NOx removal characteristics for wire-plate plasma reactor with magnetic field applied to electric field vertically. NOx from simulated diesel engine flue gas are decomposed by the corona discharge of DC, AC and Pulsed voltages in wire-plate reactor. Consumption power increased with increasing discharge voltage. When magnetic field was applied to electric field vertically, consumption power decreased. NOx removal rate and arc transition voltage of plasma reactor with magnetic field were higher than those of plasma reactor without magnetic field.

  • PDF

Understanding of Non-Thermal Atmospheric Pressure Plasma Characteristics Produced in Parallel Plate Type Geometry

  • Choe, Wonho;Moon, Se Youn;Kim, Dan Bee;Jung, Heesoo;Rhee, Jun Kyu;Gweon, Bomi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.144-144
    • /
    • 2013
  • Non-thermal atmospheric pressure plasmas have recently garnered much attention due to their unique physical and chemical properties that are sometimes significantly different from those of low pressure plasmas. It can offer many possible application areas including nano and bio/medical areas. Many different types of plasma sources have been developed for specific needs, which can be one of the important merits of the atmospheric pressure plasmas since characteristics of the produced plasma depend significantly on operating parameters such as driving frequency, supply gas type, driving voltage waveform, gas flow rate, gas composition, geometrical factor etc. Among many source configurations, parallel plate type geometry is one of the simplest configurations so that it can offer many insights for understanding basic underlying physics. Traditionally, the parallel plate type set up has been studied actively for understanding low pressure plasma physics along with extensive employment in industries for the same reason. By considering that understanding basic physics, in conjunction with plasma-surface interactions especially for nano & bio materials, should be pursued in parallel with applications, we investigated atmospheric pressure discharge characteristics in a parallel plate type capacitive discharge source with two parallel copper electrodes of 60 mm in diameter and several millimeters in gap distance. In this presentation, some plasma characteristics by varying many operating variables such as inter-electrode distance, gas pressure, gas composition, driving frequency etc will be discussed. The results may be utilized for plasma control for widening application flexibility.

  • PDF

The Characteristic of Hydrogen Generation on the Structure of Plasma Reactor Using the Streamer Discharge in the Water (수중 스트리머 방전용 플라즈마 반응기 구조에서 수소발생 특성)

  • Park, Jae-Youn;Kim, Jong-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.37-42
    • /
    • 2006
  • The effect of arc like streamer discharge is investigated on the hydrogen generation using the multineedle-plate electrode geometry plasma realtor(MPER) and the needle-plate electrode geometry plasma reactor(NPER). In order to restrict waves at the water surface when the high voltage applied, two kinds of the insulator such as the rectangular mesh or the hole mesh type are installed under the water surface. The discharge assistant of the two type(the saw type and the $TiO_2$ pellet type) was placed under the water surface to investigate the effect of the water surface conditions. The experimental results are compared in case of the reactor with and without the discharge assistant on the water surface.

Effect of Atmospheric Pressure Flame Plasma Treatment on Surface and Adhesive Bonding Properties between Steel Plate and Rubber (대기압 화염 플라즈마 처리가 강판의 표면 및 고무와의 접착특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • To increase the adhesive strength of acrylonitrile butadiene rubber(NBR) and steel plate, the atmospheric pressure flame plasma(APFP) treatment device is applied. The effect of various conditions(processing velocity and distance) is experimentally investigated to ascertain the optimum conditions to yield the best adhesive properties. It is found that the optimum distance between burner port and steel plate is 40mm and the optimum processing velocity is 50m/min at given condition. When the surface is coated twice with the bonding agent, the adhesion strength of APFP treated steel plate is increased to about 20.5%. It suggests that the surface modification of steel by flame plasma treatment at atmospheric pressure is a proper and applicable method to improve the adhesion strength between steel and rubber.

Effect of Magnetic Field on NOX Removal for Wire-Plate Plasma Reactor (선대 평판형 플라즈마 반응기에서 NOX 제거에 미치는 자계의 영향)

  • Park, Jae-Yun;Go, Hui-Seok;Son, Seong-Do;Lee, Dong-Hun;Kim, Jong-Dal
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.120-124
    • /
    • 2000
  • In this paper, the effect of magnetic field was measured on NOx(NO+NO2) removal and consumption power for wire-plate plasma reactor with magnetic field applied to electric field vertically. NOx of the simulated diesel engine flue gas were removed by the corona discharge generated by DC, AC and Pulsed voltages in wire-plate reactor. Consumption power increased with discharge voltage. However, when magnetic field was applied to electric field vertically, consumption power slightly decreased. NOx removal rate and arc transition voltage for plasma reactor with magnetic field were higher than those for plasma reactor without magnetic field. Consumption power decreased, however NOx removal significantly increased, when water vapour bubbled by dry air was put into simulated flue gas.

  • PDF

Biological Effect of Platelet Rich Plasma on the Initial Attachment, Proliferation and Cellular Activity of Osteoblast (혈소판 농축혈장이 조골세포의 초기부착과 증식 및 활성에 미치는 생물학적 영향)

  • Park, Sang-Il;Lim, Sung-Bin;Kim, Jung-Keun;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.3
    • /
    • pp.513-529
    • /
    • 2001
  • For reconstruction of the bony defect, various artificial substitutes were developed. Among them, there has been a study of calcium phosphate coated bone substitutes for increasing attachment of osteoblasts in vivo. The purpose of this study was to evaluate the effects of serum and platelet-rich plasma (PRP) on calcium phosphate coated culture plate for the initial attachment, proliferation and activity of osteoblasts. After sampling the blood from white rats and concentrating by centrifugation, the amount of attachment of PDGF-BB and $TGF-{\beta}$ on the calcium phosphate coated culture plate was measured. Cultured HOS and ROS 17/2.8 cell was measured on attachment level and proliferation rate of osteoblasts. Alkaline phosphatase activity of HOS and ROS 17/2.8 cell was measured for studying on the activating rate of osteoblast. 1. Counting the amount of platelets of seperated plasma and PRP, the average number of platelets was 177,003 $cell/{\mu}l$ in plasma, and 1,656,062 $cell/{\mu}l$ in PRP, which was about 9 times as high as in plasma. 2. Amount of PDGF-BB deposited at calcium phosphate coated plate had increased by the total amount of plasma and PRP on the culture plate, whereas $TGF-{\beta}$had been deposited on the plate only when treated by $50{\mu}{\ell}$ of PRP(p<0.01). 3. After plating serum and PRP for 3 hours, we attached with HOS and ROS17/2.8 cell for 1 hour and 4 hours. There were no significant difference of the attachment between serum and control group, whereas there were significantly difference of the attachment between depositioning of PRP and control group. 4. After attaching plasma and PRP for 3 hours, cell number has much increased when HOS and ROS17/2.8 cell had been cultured for 48 hours(p<0.05). 5. After attaching plasma and PRP for 3 hours, concentration of alkaline-phosphatase has increased when HOS and ROS17/2.8 cell had been cultured for 48 hours(p<0.01). These results suggested that PRP affected on initial cell attachment rather than proliferation and activation of osteoblasts at calcium phosphate coated plate.

  • PDF

The Characteristics of the Treatment of Pollutants ($SO_2$, NOx) Using Surface Discharge Induced Plasma Chemical Process (SPCP를 이용한 오염물질 ($SO_2$, NOx) 처리 특성)

  • 봉춘근;부문자
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.333-342
    • /
    • 1998
  • Plasma process has great possibilities to remove SOx, NOx simultaneously with high treatment efficiency and is expected to be suitable for small or middle plants. It was accomplished to evaluate SO2, NOx control possibility and achieve basic data to control pollutants by use of Surface Discharge Induced Plasma Chemical Process (SPCP) in this study. O3 generation characteristics by discharge of a plate was proportional to O2 concentration and power consumption and inversely proportional to temperature and humidity, In case of dry air, NOx was highly generated by N2 and O2 in air during the plasma discharge process but it was decreased considerably as H2O was added. SO2 removal efficiency was very high, and removal rate was 170,350 mEA at 30,50 watt respectively in flue gas which is usually contain HIO. NOx removal efficiency was about 57% at 40 watt power consumption with 7.5% humidity. It is estimated that H2O has an important role in reaction mechanism with pollutants according to plasma discharge.

  • PDF

The Effects of Welding Parameters on Quality in Lap Joint Fillet Welds of Thin Plate by Plasma Welding (Plasma 용접에 의한 박판 겹치기 이음 필릿 용접부의 품질에 미치는 용접 변수의 영향)

  • Park, Kun-Gi;Yang, Jong-Soo;Cho, Sang-Myung;Yoon, Hun-Sung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.122-127
    • /
    • 2006
  • In case of lap joint fillet welds of thin plate, the example which is applicable to Plasma Welding increases substituting for the exiting TIG Welding but the quality of Plasma arc welding has a special feature influenced sensitively by the condition of welding caused by controlling the various parts of welding torch. This research is purposed to improve lap joint fillet welds of thin plate in high quality and attain the high productivity and it is examined that how the change of electrode tip angle and Setback has an effect on the quality of welding and it is investigated how the change of Setback and Standoff has an effect on Melting efficiency using Response Surface Analysis.

  • PDF

Improvement of adhesion strength of Butadiene Rubber using Atmospheric Plasma (대기압 플라즈마를 이용한 부타디엔고무 소재의 접착력 개선)

  • Seul, Soo Duk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.556-560
    • /
    • 2010
  • An atmospheric surface modification using plasma treatment method was applied to butadiene rubber to improve its adhesion strength by plate type reactor. In order to investigate the optimum reaction condition of plasma treatment, type of reaction gas(nitrogen, argon, oxygen, air), gas flow rate(30~100 mL/min), treated time(0~30 s) and primer modification method(GMA, 2-HEMA) were examined in a plate type plasma reactor. The results of the surface modification with respect to the treatment procedure was characterized by using SEM and ATR-FTIR. As the gas flow rate and treated time increases the contact angle decreases. The greatest adhesion strength was achieved at optimum condition such as flow rate of 60 mL/min, treated time 5 s and modification primer containing 2-HEMA for air. Due to the atmospheric surface modification using plate plasma method consequently reduced the wettability of butadiene rubber and resulted in the improvement of the adhesion.