• Title/Summary/Keyword: plate equation

Search Result 807, Processing Time 0.026 seconds

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

Flux Model of One-shaft Rotary Disc UF Module for the Separation of Oil Emulsion (1축 회전판형 UF 모듈의 투과모델 및 Oil Emulsion 분리 특성)

  • 김제우;노수홍
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.86-95
    • /
    • 1996
  • Rotary disc ultrafiltration module(RDM) was developed for the separation of oil e$$\mu$sions. This module was devised to reduce the gel polarization phenomenon by decoupling the operation pressure and the surface velocity of solution in ultrafiltration(UF) processes. The rotary disc membrane consists of 3mm-thick ABS plate covered with UF membrane (UOP, U.S.A.). When the angular velocity($\omega$) was increased, the pure water flux was slightly decreased due to pressure drop caused by centrifugal force and slip flow at the surface of membrane. The pressure drop was proportional to the square of linear velocity(${\omega}r$). When the angular velocity was changed from 52.36rad/s to 2.62rad/s, the flux decline for 5% cutting oil in one-shaft RDM at $25^{\circ}C$ and 0.1MPa was 30.16%. In the lower concentrations, angular velocity tends to give less effect on the flux. Flux(J; $kg/m^{2} \cdot s$) in a rotating disc module is mainly a function of the bulk concentration($C_{B}$; %), the linear velocity(${\omega}r$; m/s) and the effective transmembrane pressure($\Delta P_{T}$ ; Pa). Using a modified resistance-in-series model, the flux data of cutting oil experiments were fitted to give the following equation.

  • PDF

The Forced Motion Analyses by Using Two Dimensional 6-Node and Three Dimensional 16-Node Isoparametric Elements with Modification of Gauss Sampling Point (6절점 2차원 및 16절점 3차원 등매개변수 요소의 가우스 적분점 수정을 이용한 강제진동 해석)

  • 김정운;권영두
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.87-97
    • /
    • 1995
  • For the same configuration of two-dimensional finite element models, 6-node element exhibits stiffer bending stiffness than 8-node element. This is true in the relation between 16-node element and 20-node element for three-dimensional model. This stiffening phenomenon comes from the elimination of several mid nodes from full-node elements. Therefore, this may be called 'relative stiffness stiffening phenomenon'. It seems that there are a couple of ways to correct the stiffening effect, however, we could find only one effective method-the method of modification of Gauss sampling points-which passes the patch test and does not alter other kinds of stiffness, such as extensional stiffness. The quantity of modification is a function of Poisson's ratios of the constituent materials. We could obtain two modification equations, one for plane stress case and the other for plane strain case. This method can be extended to 3-dimensional solid elements. Except the exact plane strain cases, most 3-dimensional plates could be modeled successfully with 16-node element modified by the equation for the plane stress case. The effectiveness of the modification method is checked by applying it to several examples with excellent improvements. In numerical examples, beams with various boundary conditions are subjected to static and time-dependent loads. Free and forced motion analyses of beams and plates are also tested. The beam and plate may be composed of isotropic multilayers as well as a single layer.

  • PDF

Development of a force measurement device for curling sweeping with load cells (로드셀을 이용한 컬링 스위핑 힘 측정 장치 개발)

  • Lee, Sangcheol;Kim, Taewhan;Kil, Sekee;Choi, Sanghyup
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.49-56
    • /
    • 2017
  • Curling sweeping is one of important motion to control the position of the curling stone, and sweeping speed and applied force to the broom pad are major research subjects. In this study, a device was developed to measure the force applied to the curling broom pad in curling sweeping motion, and two load cells were mounted between the broom pad and pad holder. Analog signals generated from the load cells were sampled about 300 times per second using a micro controller, and then converted to 10-bit digital signals. Calibration of the load cell and set up of regression equations to convert the measured electrical signals into mass (force) was done by three M1 class weights, and the developed system was designed as wearable device to minimize increasing of total weight of the broom. Same force was applied to the developed system and a force plate that was using as a reference force measurement system in field of sports, and the difference between the measured values were showed about $0.909{\pm}1.375N$(mean and standard deviation). The developed system could be applied other kinds of study which required force measurement function similar to sweeping motion.

The Effect of Impact Velocity on Droplet-wall Collision Heat Transfer Above the Leidenfrost Point Temperature (Leidenfrost 지점 온도 이상에서 액적-벽면 충돌 열전달에 대한 충돌 속도의 영향)

  • Park, Jun-seok;Kim, Hyungdae;Bae, Sung-won;Kim, Kyung Doo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.567-578
    • /
    • 2015
  • Single droplet-wall collision heat transfer characteristics on a heated plate above Leidenfrost temperature were experimentally investigated considering the effects of impact velocity. The collision characteristics of the droplet impinged on the heated wall and the changes in temperature distribution were simultaneously measured using synchronized high-speed video and infrared cameras. The surface heat flux distribution was obtained by solving the three-dimensional transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition for the collision surface. As the normal impact velocity increased, heat transfer effectiveness increased because of an increase in the maximum spreading diameter and a decrease in the vapor film thickness between the droplet and heated wall. For We < 30, droplets stably rebounded from a heated wall without breakup. However, the droplets broke up into small droplets for We > 30. The tendency of the heat transfer to increase with increasing impact velocity was degraded by the transition from the rebounding region to the breakup region; this was resulted from the reduction in the effective heat transfer area enlargement due to the breakup phenomenon.

Morphology of La-Co substituted SrM ferrite (La-Co 치환량에 따른 스트론튬 페라이트의 미세구조)

  • Jang Se-Dong
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.12a
    • /
    • pp.27-34
    • /
    • 2004
  • This experiment was carried out to examine the effects of morphology on properties of La-Co substituted SrM ferrite. The magnetic properties of calcined and sintered materials varied with the substitutional amount of La and Co elements in Sr-ferrite. In the substituted SrM ferrite, the atomic fraction x of La is directly related to the mole ratio n of iron oxide and the atomic fraction y of Co by equation x=2ny. The HcJ values of the calcined powder were about 270 kA/m and 240 kA/m with x=0.3 and K=0.2, respectively at stoichiometriy, n=6.0. Crystallites of the sintered material were grown with a plate shape, and their size decreased with increasing mole ratios. Such a shape was caused by the initial state of crystallite formed after calcination. In case of x=0.3 and n=6.0, Br was 415 mT and HcJ was 355 kA/m, and in x=0.2 and n=6.0, Br was 410 mT and HcJ was 370kA/m. The squareness in 2nd quarter of BH curve with x=0.2 was smoothly improved compared with x=0.3

  • PDF

A Study on the Composite Behavior of Simply Supported Composite Girders Considering the Partial Interaction (불완전 합성율을 고려한 단순합성형의 합성거동에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Park, Jae Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.543-555
    • /
    • 1997
  • Generally, in a steel-concrete composite gilder, the shear connector which was constructed between concrete deck and steel girder should have enough stiffness to behave as one body, because the conformity between plate and concrete deck is influences by the stiffness and spacing of the shear connectors. If the stiffness of shear connectors are insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, an easy method is presented to evaluate the stiffness or spacing of the shear connector according to the degree of imperfection without difficult calculations for a composite gilder with partial interaction. Also, the horizontal shearing force applied to the shear connector and the longitudinal axial force, which is occurs at contact surface between concrete deck and steel girder, have been presented in a simple influence line that is various to the parameters of sectional properties, degree of imperfection and applied load points. Furthermore, through the case study, it determined the relationships between the degree of imperfection and the follows 1) spring constants 2) axial force and horizontal shearing force 3) stress and neutral axis by using the partial differential equation based on Newmark's Partial Interaction Theory.

  • PDF

A Numerical Model of Three-dimensional Soil Water Distribution for Drip Irrigation Management under Cropped Conditions (작물 흡수를 고려한 3차원 토양수분 분포 모델 개발을 통한 최적 점적 관개 연구)

  • Kwon, Jae-Phil;Kim, Seung-Hyun;Yoo, Sun-Ho;Ro, Hee-Myong
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.116-123
    • /
    • 2000
  • A numerical model of three-dimensional soil water distribution for drip irrigation management under cropped conditions was developed using Richards equation in Cartesian coordinates. The model accounts for both seasonal and diurnal changes in evaporation and transpiration, and the growth of plant root and the shape of root zone. Solutions were numerically approximated using the Crank-Nicolson implicit finite difference technique on the block-centered grid system and the Gauss-Seidel elimination in tandem. The model was tested under several conditions to allow the flow rates and configurations of drip emitters vary. In general, simulation results agreed well with experimental results and were as follows. The velocity of soil-water flow decreased drastically with distance from the drip source, and the rate of expansion of the wetted zone decreased rapidly during irrigation. The wetting front of wetted zone from a surface drip emitter traveled farther in vertical direction than in horizontal direction. Under this experimental weather condition, water use efficiency of a drip-irrigated apple field was greatest for 4-drip-emitter system buried at 25 cm, resulting from 10% increase in transpiration but 20% reduction in soil evaporation compared to those for surface 1-drip emitter system. Soil moisture retention curve obtained using disk tension infiltrometer showed significant difference from the curve obtained with pressure plate extractor.

  • PDF

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.

Lateral-Torsional Buckling Strength of I-girder with Corrugated Steel Webs under Linear Moment Gradient (선형 모멘트 구배가 작용하는 파형강판 I-거더의횡-비틂 좌굴 강도)

  • Moon, Jiho;Lim, Nam-Hyoung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.149-160
    • /
    • 2012
  • Corrugated steel plates have several advantages such as high resistance for shear without stiffeners, minimization of welding process, and high fatigue resistance. To take advantage of these benefits, several researchers have attempted to use corrugated steel plate as a web of I-girders. The lateral-torsional buckling is the major design aspect of such I-girders. However, lateral-torsional buckling of the I-girder with corrugated steel webs still needs to be investigated especially for a real loading condition such as non-uniform bending. This paper investigated the lateral-torsional buckling strength of the I-girder with corrugated steel webs under linear moment gradient by using finite element analysis. From the results, it was found that the buckling behavior of the I-girder with corrugated steel webs differed depending on the number of periods of the corrugation. Also, a simple equation for the moment gradient correction factor of the I-girder with corrugated steel webs was suggested. The inelastic lateral-torsional buckling strength of the I-girder with corrugated steel webs was then discussed based on current design equations for ordinary I-girders and the results of finite element analysis.