A numerical approach combining the finite element method with two different stability criteria namely the Budiansky and the phase-plane buckling criteria is used to study the dynamic buckling phenomena of plate and shell structures subjected to sudden applied loading. In the finite element analysis an explicit time integration scheme is used and the two criteria are implemented in the Finite Element analysis. The dynamic responses of the plate and shell structures have been investigated for different values of the plate and shell imperfection factors. The results indicate that the dynamic buckling time, which is normally considered in predicting elasto-plastic buckling behavior, should be taken into consideration with the buckling criteria for elastic buckling analysis of plate and shell structures. By selecting proper control variables and incorporating them with two dynamic buckling criteria, the unique dynamic buckling load can be obtained and the problems of ambiguity and contradiction of dynamic buckling load of plate and shell structure can be resolved.
Proceedings of the Computational Structural Engineering Institute Conference
/
1998.10a
/
pp.258-265
/
1998
Application of the flat shell element with drilling D.O.F to linear buckling analysis of thin-walled structures is presented in this paper. The shell element has been developed basically by combining a membrane element with drilling D.O.F. and Mindlin plate bending element. Thus, the shell element possesses six degrees-of-freedom per node which, in addition to improvement of the element behavior, permits an easy connection to other six degrees-of-freedom per node elements(CLS, Choi and Lee, 1995). Accordingly, structures like folded plate and stiffened shell structure, for which it is hard to find the analytical solutions, can be analyzed using these developed flat shell elements. In this paper, linear buckling analysis of thin-walled structures like folded plate structures using the shell elements(CLS) with drilling D.O.F. to be formulated and then fulfilled. Subsequently, buckling modes and the critical loads can be output. Finally. finite element solutions for linear buckling analysis of folded plate structures are compared with available analytic solutions and other researcher's results.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.26
no.4
/
pp.483-491
/
2016
Precision of theoretical group velocity of waves in shell structures was discussed for the purpose of source localization of loose parts impact in pressure vessels of nuclear power plants. Estimating exact location of loose parts impact inside a reactor or a steam generator is very important in safety management of a NPP. Evaluation of correct propagation velocity of impact signals in pressure vessels, most of which are shell structures, is essential in impact source localization. Theoretical group velocities of impact signals in a plate and a shell were calculated by wave equations and compared to the velocities measured experimentally in a plate specimen and a scale model of a nuclear reactor. The wave equation applicable to source localization algorithm in shell structures was chosen by the study.
Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.
Proceedings of the Computational Structural Engineering Institute Conference
/
1998.04a
/
pp.317-324
/
1998
A nonlinear anile element formulation of flat shell elements with drilling d.o.f, is presented for the geometrical nonlinear analysis of thin-walled structures. The shell element to be applied in finite element analysis was developed by combining a membrane element named as CLM with drilling rotation d.o.f, and plate bending element. The combined shell element possesses six degrees of freedom per node. The element showed the excellent performance in the linear analysis of the folded plate structures, in which the normal rotational rigidity of folded plates is considered, therefore, using this element geometrical nonlinear analysis of those structures is fulfilled in this study. An incremental total Larangian approach is adopted through out in which displacements are referred to the original configuration. Comparing the results with those of other researches shows the performance of this element and a folded plate structure is analyzed as an example.
In this paper, an extended finite element method is proposed to analyze both geometric and material non-linear behavior of general Functionally Graded Material (FGM) plate-shell type structures. A user defined subroutine (UMAT) is developed and implemented in Abaqus/Standard to study the elastoplastic behavior of the ceramic particle-reinforced metal-matrix FGM plates-shells. The standard quadrilateral 4-nodes shell element with three rotational and three translational degrees of freedom per node, S4, is extended in the present study, to deal with elasto-plastic analysis of geometrically non-linear FGM plate-shell structures. The elastoplastic material properties are assumed to vary smoothly through the thickness of the plate-shell type structures. The nonlinear approach is based on Mori-Tanaka model to underline micromechanics and locally determine the effective FGM properties and self-consistent method of Suquet for the homogenization of the stress-field. The elasto-plastic behavior of the ceramic/metal FGM is assumed to follow Ludwik hardening law. An incremental formulation of the elasto-plastic constitutive relation is developed to predict the tangent operator. In order to to highlight the effectiveness and the accuracy of the present finite element procedure, numerical examples of geometrically non-linear elastoplastic functionally graded plates and shells are presented. The effects of the geometrical parameters and the volume fraction index on nonlinear responses are performed.
Traffic decks of steel or composite motorway bridges sometimes provide the opportunity of using the composite action between an existing steel deck and a reinforced concrete plate (RC plate) in the process of rehabilitation, i.e., to increase the load-carrying capacity of the deck for concentrated traffic loads. The steel decks may be orthotropic decks or also unstiffened steel plates, which during the rehabilitation are connected with the RC plate by shear studs, such developing an improved local load distribution by the joint behaviour of the two plate elements. Investigations carried out, both experimentally and numerically, were performed in order to quantitatively assess the combined static behaviour and to qualitatively verify the usability of the structure for dynamic loading. The paper reports on the testing, the numerical simulation as well as the comparison of the results. Conclusions drawn for practical design indicated that the static behaviour of these structures may be very efficient and can also be analysed numerically. Further, the results gave evidence of a highly robust behaviour under fatigue equivalent cyclic traffic loading.
Proceedings of the Computational Structural Engineering Institute Conference
/
1997.10a
/
pp.119-125
/
1997
The finite element analysis of plate and shell structures has been one of the major research interests for many years because of the technological importance of such structures. Quite often these structures are constructed by laminated composites. This is due to the high specific stiffness and strength of composite structures. The main objective of this paper is to extend the use of an improved degenerated shell element to the large displacement analysis of plates and shells with laminated composites. The total Lagrangian approach has been chosen for the definition of the deformation and the solution to the nonlinear equilibrium equations is obtained by the Newton-Raphson method.
Proceedings of the Computational Structural Engineering Institute Conference
/
1999.04a
/
pp.234-241
/
1999
In this study, an improved 8-node flat shell element is presented for the analysis of shell structure, by combining 8-node membrane element with drilling degree-of-freedom and 8-node plate bending element based on the recently presented technique. Firstly, 8-node membrane element designated as CLM8 is presented in this paper. The element has drilling degree-of.freedom in addition to transitional degree-of-freedom. Therefore the element possesses 3 degrees-of-freedom per each node which as well as the improvement of the element behavior, permits an easy connection to other element with rotational degree-of -freedom. Secondly. 8-node flat shell element was composed by adding 8-node Mindlin plate bending element to the membrane element. The behavior of the introduced plate bending element is further improved by combined use of nonconforming displacement modes, selectively reduced integration scheme and assumed shear strain fields. The element passes in the patch test, doesn't show spurious mechanism and doesn't produce shear locking phenomena. Finally, Numerical examples are presented to show the performance of flat shell element developed in the present study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.