• 제목/요약/키워드: plasticity model

검색결과 1,160건 처리시간 0.023초

강소성 유한 요소 해석에 연계한 Rate-Independent 결정소성학을 이용한 3차원 알루미늄 압출재에서의 변형 집합 조직 예측 (Prediction of Texture Evolution of Aluminum Extrusion Processes using Rigid-Plastic Finite Element Method based on Rate-Independent Crystal Plasticity)

  • 김경진;양동열;윤정환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.485-488
    • /
    • 2005
  • Most metals are polycrystalline material whose deformation is dominated by the slip system. During the deformation process, orientation of slip systems is rearranged with preferred orientations, leading to deformation-induced crystallographic texture which is called deformation texture. Depending on the texture development, the property of material can be changed. The rate-independent crystal plasticity which is based on the Schmid law as a yield function causes a non-uniqueness in the choice of active slip systems. In this work, to avoid the slip system ambiguity problem, rate-independent crystal plasticity model based on the smooth yield surface with rounded-off corners is adopted. In order to simulate the polycrystalline material under plastic deformation, we employ the Taylor model of polycrystal behavior that all the grains are assumed to be subjected to the macroscopic velocity gradient. Rigid-plastic finite element program based on this rate-independent crystal plasticity is developed to predict the grain-level deformation behavior of FCC metals during metal forming processes. In the finite element calculation, one integration point is considered as a crystalline aggregate which has a number of crystals. Macroscopic behavior of material can be deduced from the behavior of aggregates. As applications, the extrusion processes are simulated and the changes of mechanical properties are predicted.

  • PDF

CA 모델을 통한 동적재결정 예측에 있어서의 재료상수 선정 (Determination of Materials Constants for Dynamic Recrystallization Prediction by Cellular Automata Modeling)

  • ;;이경훈;강경필
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.288-291
    • /
    • 2008
  • Physics based Cellular Automata model is developed and implemented into FEM code. CA model can predict microstructure evolution based on physical phenomena, such as hardening, recovery and recrystallization. This paper outlines the methodology to determine the materials constants for these different phenomena from simpler measurements.

  • PDF

등가 드로우비드 이론 모델 검증 (Verification of Theoretical Model for Equivalent Drawbend)

  • 문성준;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.367-369
    • /
    • 2008
  • A theoretical model of equivalent drawbead for sheet metal forming analysis is experimentally verified in this paper. After the theoretical drawbead models improved a material description for the accurate calculation of drawbead forces are briefly introduced, they are verified by showing the good agreement of their drawbead forces with experimental measurements. Furthermore, the excellence of theoretical models is demonstrated by the comparison with those of commercial codes.

  • PDF

A NUMERICAL ALGORITHM FOR ELASTO-PLASTIC MATERIAL DEFORMATION

  • HWANG HYUN-CHEOL
    • 대한수학회논문집
    • /
    • 제20권3호
    • /
    • pp.589-602
    • /
    • 2005
  • We present the numerical algorithm for the model for high-strain rate deformation in hyperelastic-viscoplastic materials based on a fully conservative Eulerian formulation by Plohr and Sharp. We use a hyperelastic equation of state and the modified Steinberg and Lund's rate dependent plasticity model for plasticity. A two-dimensional approximate Riemann solver is constructed in an unsplit manner to resolve the complex wave structure and combined with the second order TVD flux. Numerical results are also presented.

용접 계면균열의 크리프-피로 거동에 대한 수치해석적 연구 (A Computational Study on Creep-Fatigue behavior of Weld Interface Crack)

  • 이진상;윤기봉
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 춘계학술발표대회 개요집
    • /
    • pp.264-266
    • /
    • 2000
  • In this study, analysis of creep-fatigue behavior of low alloy steel weld was performed. An interface was employed along the crack plane to simulate the interface between base metal and weld metal. A trapezoidal waveshapes was loaded cyclically and analysis result was compared with that of monotonic load. The material was assumed as elastic-plastic-secondary creeping material. Because the isotropic hardening plasticity model used in the last study cannot simulate the behavior of material under cyclic load, the linear kinematic hardening plasticity model was used. The behavior of strain field and $C_{t}$ parameter was obtained.d.

  • PDF

유한 요소법을 이용한 다단 선재 압연의 3차원 정상 상태 변형 해석 (Finite Element Analysis of 3 Dimensional Steady State Deformation in Multi-stand Rod and Bar Rolling)

  • 김홍준;김태효;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.134-137
    • /
    • 1998
  • Caliber design in bar and rod rolling depends on the designer's experience, which in general is acquired through costly trial-and-error process. As a prerequisite for developing a scientific approach to caliber design, we present a finite element model to simulate 3-D deformation of bars and rods occurring in multi-pass sequence. The results are compared with measurements obtained from POSCO for to assess the solution accuracy. The comparison shows that the simulation results agree well experiments.

  • PDF

유한 요소법을 이용한 다단패스 형상압연 공정 해석 (Analysis of Multi-Pass Shape Rolling Processes using Finite Element Method)

  • 김홍준;김태효;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.69-77
    • /
    • 1999
  • Roll profile design in spape rolling with a complex-shaped part depends on the designer's experience, which is general, is acquired through costly trial-and-error process. As a prerequisite for developing a scientific approach to roll profile design, we present a finite element model to simulate 3-D deformation of complex-shaped parts occuring in multi-pass sequence. Demonstrated is the process model's capability to deal with rolling of a complex-shaped part.

  • PDF

압연강판의 이방성에 관한 연구 (Study of anisoptopy of sheet metals)

  • 인정제
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.153.1-156
    • /
    • 1999
  • Based upon the experimental data from multi-stage tensile loading at angles to the rolling direction of steel sheets, anisotropic hardening rules are proposed. Experiments show that orthotropic anisotropy is maintained and the orientations of orthotropy axes are changed during tensile loading. A phenomenological model is proposed which includes the rotations of orthotropy axes, work hardening and kinematic hardening. Using the model, uniaxial tensile stress, R-value and tensile necking strain are predicted and compared with the experimental data.

  • PDF

박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발 (1부: 실험) (Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Process (Part1: Experiment))

  • 금영탁;이재우;박승우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.46-49
    • /
    • 1997
  • During sheet metal forming on a double-action press, drawbeads on the blankholder supply a restraining force which controls the flow of metal into the die. The sheet formability can be improved by the optimum drawbeads installation when the punch enters into the die opening. Experiments on the various drawbeads, circular, step, double circular, and circular-step drawbead, have been performed under various working conditions.

  • PDF

설계민감도를 이용한 비정상상태 소성가공공정 최적 설계 (Optimal Process Design in Non-Steady Metal Forming by the Design Sensitivity)

  • 정석환;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.113-118
    • /
    • 1997
  • A new approach to process optimal design in non-isothermal, non-steady state metal forming is presented. In this approach, the optimal design problem is formulated on the basis of the integrated thermo-mechanical finite element process model so as to cover a wide range of the objective functions and design variables, and the derivative based approach is adopted for conducting optimization by design iteration. The process model, the formulation for process optimal design, and the procedures for the evaluation of the design sensitivity and for design iteration for optimization are described.

  • PDF