• Title/Summary/Keyword: plastic wastes

Search Result 103, Processing Time 0.029 seconds

The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites for Train Body (철도차량용 폐 복합소재에서의 탄소섬유 회수)

  • Lee, Suk-Ho;Lee, Cheul-Kyu;Kim, Yong-Ki;Kim, Jung-Seok;Ju, Chang-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.406-415
    • /
    • 2008
  • Recently, the amount of thermosetting plastic wastes have increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy composites, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that recovers carbon fibers from carbon fiber reinforced epoxy composites for train body was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

  • PDF

Sorption Characteristics of Tetracycline in Water on Microplastics (수중 테트라사이클린의 미세플라스틱에 대한 흡착 특성)

  • Yu Jin Seo;Ruri Lee;Eun Hea Jho
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.276-281
    • /
    • 2022
  • BACKGROUND: Plastics that are used in our daily lives largely end up in the environment. In agricultural environments, plastic wastes and microplastics can be found due to the uses and improper management of plastic products (e.g., vinyl greenhouses and mulching vinyl). Microplastics can also interact with contaminants in the agricultural environment. Therefore, this study was set to investigate the sorption characteristics of tetracycline, one of widely used antibiotics, on microplastics. METHODS AND RESULTS: The sorption tests were carried out with the tetracycline solutions (0-30 mg L-1) and microplastic films prepared from low density polyethylene (LDPE) and polyvinyl chloride (PVC). The residual tetracycline concentrations were analyzed and fitted to the Freundlich and Langmuir isotherm models. The tetracycline sorption patterns on LDPE and PVC films were described better with the Freundlich isotherm model than the Langmuir isotherm model. The isotherm model parameters suggested that the maximum sorption amount of tetracyline was greater for PVC, while the sorption affinity was greater for LDPE. CONCLUSION(S): Different types of microplastics can have different sorption characteristics of tetracycline. Therefore, there is a need for continuous research on the interaction of various types and shapes of microplastics and contaminants in the environment.

Chemical Composition and Nutritional Value of Algae Meal Produced from Dairy Cow Wastes as a Feedstuff (젖소폐기물에서 생산된 Algae Meal의 화학적조성 및 사료적가치)

  • Kim, Y.K.;Eun, J.S.;Kim, S.D.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.1
    • /
    • pp.75-85
    • /
    • 1998
  • Algal meal (cell) was produced from the solution of dairy cow wastes by fermentation of ulothrix. sp. and chlorella sp. Raw wastes mainly feces were diluted with ground water to give dry matter concentration of 0.5 w/v of wastes in 20 l amounts of ten plastic containers. Each containers were covered with plastic nets and vinyl films to protect from the insects and rain. Algea cells were harvested every 3 to 5 days and dried by sunlight and artifitial heat. Dried cells were ground by a feed meal, and analyzed and tested for the chemical composition of dry cell, in vitro DM and protein digestibility and the safty of algae. Protein contents in algae meals, ulothrix (29.37%) and chlorella (29.24%) were similar. However, chlorella contained lower Neutral detergent fiber (5.92%) than ulothrix(20,76%), and higher ash (32.86%) and calcium (12.62%) than ulothrix (28.66% and 6.09%) (P<.01). Ulothrix protein had higher for essential amino acids; valine, isoleucine and phenylalanine, than chlorella (P<.05). Algal fats contained high saturated fatty acids, C16:0 and C18:0, for ulothrix and high unsaturated fatty acids, C18:1 and C18:2, for chlorella (P<.01). In vitro digestibility of. ulothrix tended to be higher for DM, but lower for protein than chlorella. The weight gain and survival percentage were higher for pond fishes (loaches, Misgurnus sp. ) fed diet added chlorella meal than diets added ulothrix meal and control diet (P<.05).

  • PDF

The Study of the Separation Efficiency of Wind Power Selector Using Computational Fluid Dynamics (전산유체역학을 이용한 풍력 선별기의 선별효율 연구)

  • Lee, Keon Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.74-81
    • /
    • 2013
  • In this study, the separation efficiency of wind power selector (the direction of the air flow of the air to perform gravity separation method) of municipal solid waste which was landfilled was investigated to reduce amount of waste that is designed to increase the recycling rate of wastes for the ANSYS CFX Program's numerical methods with wind through the separator. When a suction device designed to suction 1000mL of a plastic bag, the separation efficiency was 100% and when the wind speed was 0.9 m /sec or more and when the wind speed was 1.6 m / sec or more, the efficiency of plastic bottles in a mixture of 500mL and 1500mL plastic bottle waste was 100% and the aluminum screening efficiency of 250mL aluminum can was 100 % when the wind speed was 2.3 m / sec. In the last, 5mm thick compressed aluminum can efficiency was 90 % when the wind speed was 2.4 m / sec.

Study on the Criteria of Raw Materials for RDF (폐기물 고형연료(RDF)의 원료 기준 연구)

  • Nho, Namsun;Shin, Daehyun;Bae, Dalhee;Kong, Seungdae;Cho, Seoyoung;Kim, Kwangho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.187.1-187.1
    • /
    • 2011
  • RDF(Refuse-Derived Fuel) is a fuel of pelletized form made of combustible solid wastes and can not only be used as alternative energy to fossil fuel but also solve troubles in thermal uses of incinerator. As the first stage for obtaining elementary data required to develop criteria of raw materials appropriate to RDF combustion facilities actively spread recently in Korea, preliminary experiments were conducted on CO, SOx, NOx and HCl production and reduction characteristics in combustion of RDF. RDF samples weighing 2~3 g per a sample were manufactured in a lab-scale way and combustion tests of RDF were carried out in electric furnace with quartz tube of 50 mm inside diameter.

  • PDF

The disposal process for scrapped FRP fishing vessels (감척으로 인한 FRP 어선의 처리방안)

  • Song, Jung-Hun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.75-80
    • /
    • 2008
  • A scrapped fiber-reinforced plastic(FRP) fishing vessel causes many environmental problems, because technology development for recycling FRP vessel has not been adequately addressed. FRP is a main material for constructing a small coastal fishing vessel that is an object of reduction policy. Therefore, the FRP wastes derived a scrapped fishing vessel are increasing. In this study, I investigated an effective disposal process for FRP through the analysis of the actual conditions of scrapped FRP fishing vessel. The treatment processes of scrapped FRP fishing vessel are carried out with oil-removing, dismantling, intermediated processing(crushing), and then reclaiming follows burning in the final processing in Korea. However, in Japan, several recycling methods have been developed, for example, the incineration including thermal recovery, the use of cement-reclamation, and the use of asphalt concrete aggregate, because the method of reclaiming after incinerating which is generally used in Korea produces a toxic by-product such as dioxin.

A study on Wastes Treatment by Plasma (Plasma를 이용한 폐기물처리기술)

  • Park, Hyeon-Seo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.120.1-120.1
    • /
    • 2014
  • 고온 plasma는 전자, 이온, 중성입자로 구성된 이온화된 기체로 국소열평형 상태의 구성입자가 수천도에서 수만도에 이르는 큰열용량을 갖는 불꽃형태를 이루고있다. 따라서 고온 plasma는 고온, 고열로 대상물질을 용융 또는 기화시켜 물질의 물리적상태를 변화시키는 열원역활을 하거나, 높은반응성을 갖는 입자들에 의한 화학반응을 촉진하는 반응촉매로 작용하여 고기능성 부품소재, 에너지 환경, 원자력, 항공우주,유가금속 재활용등의 분야에서 핵심적인 역활을 하고 있슴니다. 본 발표에서는 연구소에서 지금까지 국책과제로 수행되었던 고온 plasma을 유해폐기물(병원, 유독 액상폐기물, 군화공폐기물, 중금속 함유 폐기물, 폐 plastic 가스화 등)처리에 관한 전반적인기술을 소개하고져함.

  • PDF

A Study on the Recycle and Reuse Suitability Environmenttal Furniture Design - Design Of Street Furniture with Maneking - (재사용 및 재활용에 적합한 환경가구디자인에 관한 연구 - 마네킹(Maneking)을 이용한 스트리트 퍼니처(Street Furniture) 디자인을 중심으로 -)

  • Lee, Min-Ho
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2006
  • This study focused on designing environment-friendly furnitures by recycling useless stuffs. I designed environment-friendly furnitures by using plastic manekings, which do not decay easily. Designing environment-friendly furnitures by using maneking, we should consider the following; to make our surrounding comfortable and pleasant, to make the appearance of the streets more beautiful, and to consider our future environment. We need to use reusable and recyclable wastes much more to make environment-friendly furnitures from now on.

  • PDF

Physical and mechanical properties of cement mortar with LLDPE powder and PET fiber wastes

  • Benimam, Samir;Bentchikou, Mohamed;Debieb, Farid;Kenai, Said;Guendouz, Mohamed
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.461-467
    • /
    • 2021
  • Polyethylene-terephthalate (PET) from bottle waste and linear low-density polyethylene (LLDPE) from barrels and tanks waste are widely available and need to be recycled. Recycling them in concrete and mortar is an alternative solution for their disposal. In this study various quantities of sand (5%, 10%, 15% and 20%) were substituted by powder from LLDPE waste. In addition, PET waste fibers (corrugated, straight) were added to the mortar with different percentages (0.5%, 1%, 1.5% and 2%) of cement mass. This paper evaluate the mechanical and physical properties of the composites in fresh (workability, air content and density) and hardened state (compressive and flexural strength, water absorption and total shrinkage). From the experimental results, it can be concluded that the strengthening in tensile of the mortar with plastic waste corrugated fibers is improved. Other important results are that the water absorption and the density rate are less than that of the ordinary mortar.