• Title/Summary/Keyword: plastic modulus

Search Result 284, Processing Time 0.027 seconds

Modeling the Behavior of Trapped Air in Die Cavity During Sheet Metal Forming (판재성형 해석시 금형내의 공기거동 모델링)

  • Choi, Kwang-Yong;Kim, Heon-Young
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.377-386
    • /
    • 2011
  • During stamping processes, the air trapped between sheet metal and the die cavity can be highly compressed and ultimately reduce the shape accuracy of formed panels. To prevent this problem, vent holes and passages are sometimes drilled into the based on expert experience and know-how. CAE can be also used for analyzing the air behavior in die cavity during stamping process, incorporating both elasto-plastic behavior of sheet metal and the fluid dynamic behavior of air. This study presents sheet metal forming simulation combined simultaneously with simulation of air behavior in the die cavity. There are three approaches in modeling of air behavior. One is a simple assumption of the bulk modulus having a constant pressure depending on volume change. The next is the use of the ideal gas law having uniform pressure and temperature in air domain. The third is FPM (Finite point method) having non-uniform pressure in air domain. This approach enables direct coupling of mechanical behavior of solid sheet metal and the fluid behavior of air in sheet metal forming simulation, and its result provides the first-hand idea for the location, size and number of the vent holes. In this study, commercial software, PAM-$STAMP^{TM}$ and PAM-$SAFE^{TM}$, were used.

Inelastic large deflection analysis of space steel frames consisting of I-shaped cross section

  • ElSabbagh, Ashraf;Hanefa, Ahmed;Zubydan, Ahmed;ElGhandour, Mohamed;Sharaf, Tarek
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.887-898
    • /
    • 2021
  • This paper presents a simplified model to capture the nonlinear behavior of steel frames depending on the spread of plasticity method. New interaction formulae were derived to evaluate the plastic strength for I-shaped steel sections under uniaxial bending moment and axial compression load. Also, new empirical formulae were derived to evaluate the tangent stiffness modulus of steel I-shaped cross-sections considering the effect of the residual stresses suggested by the specifications in European Convention for Construction Steelworks (ECCS). The secant stiffness which depends on the tangent modulus is used to evaluate the internal forces. Based on stiffness matrix method, a finite element analysis program was developed for the nonlinear analysis of space steel frames using the derived formulae. Comparison between the proposed model results with those given by the fiber model shows very good agreement. Numerical examples were introduced to verify, check the accuracy, and evaluate the efficiency of the proposed model. The analysis results show that the new proposed model is accurate and able to minimize the solution time.

Studies on the Development of TiAIN/CrN Multi-layered Thin Films by Unbalanced Magnetron Sputtering Process (비대칭 스퍼터링에 의한 TiAIN/CrN 나노 다층 박막의 합성 및 특성 분석에 관한 연구)

  • Kim, Gwang-Seok;Kim, Bom-Sok;Lee, Sang-Yul
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.6
    • /
    • pp.207-211
    • /
    • 2005
  • In this work a multi-layered nanostructured TiAIN/CrN superlattice coatings was synthesized using closed-field unbalanced magnetron sputtering method and the relationships between their superlattice period (1), micro-structure, hardness and elastic modulus were investigated. In addition, wear test at $500^{\circ}C$ and oxidation resistance test at $900^{\circ}C$ were performed to investigate high temperature properties of these thin films. The coatings were characterized in terms of microstructure and mechanical properties by transmission electron microscopy (TEM) and nano-indentation test. Results from TEM analysis showed that superlattice periods was inversely proportional to the jig rotation speed. The maximum hardness and elastic modulus of 37 GPa and 375 GPa were observed at superalttice period of 6.1 nm and 4.4 nm, respectively. An higher value of microhardness from TiAIN/CrN thin films than either TiAIN (30 GPa) or CrN (26 GPa) was noted while the elastic modulus was approximately an average of TiAIN and CrN films. These enhancement effects in superlattice films could be attributed to the resistance to dislocation glide across interface between the CrN and TiAIN layers. Much improved plastic deformation resistance ($H^3/E^2$) of 0.36 from TiAIN/CrN coatings was observed, compared with 0.15 and 0.16 from TiAIN and CrN, respectively. Also the wear resistance at $500^{\circ}C$ was largely increased than those of single TiAIN and CrN coatings and TiAIN/CrN coatings showed much reduced weight gain after exposure at $900^{\circ}C$ for 20 hours.

平面應力 破壞靭性値 擧動에 관한 硏究

  • 송삼홍;고성위;정규동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.376-385
    • /
    • 1987
  • In this study, the plane stress fracture toughness and Tearing modulus are investigated for various crack ratios using the J integral. To evaluate the J integral and Tearing modulus, both experiments and estimation are used. The thickness of the low carbon steel specimens that is used in the experiments is 3mm. The type of specimen that is considered in the study is center-cracked-tension one. The measurements of crack length are performed by unloading compliance method. In the estimation of crack parameters such as the J integral and load line displacement, the Ramberg and Osgood stress strain law is assumed. Then simple formulas are given for estimating the crack parameters from contained yielding to fully plastic solutions. Obtained results are as follows; (1) When the crack ratio is in the range of 0.500 - 0.701, the plane stress fracture toughness is almost constant regardless of crack ratios. (2) The fracture toughness (J$\_$c/) and Tearing modulus (T) obtained are J$\_$c/=28.51kgf/mm, T=677.7 for base metal, J$\_$c/=31.85kgf/mm, T=742.0 for annealed metal. (3) Simpson's and McCabe's formulas which consider crack growth in estimating J integral are shown more conservative J and lower T than Rice's and Sumpter's. (4) Comparison of the prediction with the actual experimental measurements by Simpson's formula shows good agreement.

Mechanical Properties of Minerals in Daejeon Granite According to Depths by Dynamic Ultra-micro Hardness (동적 초미소 경도법에 의한 심도별 대전화강암 내 광물들의 역학적 특성)

  • Choi, Junghae;Shin, Juho;Jang, Hyongdoo;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.172-184
    • /
    • 2017
  • The hardness and mechanical properties of the minerals in the Daejeon granite according to depths were investigated by indentation test, load-unload test, and cycle test of dynamic ultra-micro hardness. As a result of the tests, it was possible to classify into three mineral groups (Group-1, -2, -3). The Martens hardness was not significantly different between 41 m and 223 m depths in three mode tests. Nevertheless, they showed in the order of a cycle test < load-unload test < indentation test. Considering the average Martens hardness, elastic modulus, and indentation work for each mineral group, their boundaries were relatively clear. In conclusion, A relatively accurate hardness of minerals can be obtained by three mode tests of dynamic ultra-micro hardness. In addtion, it was possible to characterize the elastic modulus and the elastic-plastic properties of the minerals from the load-unload and cycle tests.

Effect of Combining Wood Particles and Plastic(Polypropylene) Screen on the Physical and Mechanical Properties of Board (목재(木材)파이티클과 플라스틱(폴리프로필렌) 망(網)의 결체(結締) 보오드의 물리(物理) 및 기술적(機械的) 성질(性質)에 미치는 영향(影響))

  • Lee, Phil-Woo;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.21-44
    • /
    • 1988
  • As a way for the effective utilization of pallman chips and sawdusts, these furnish materials were combined with non-woody material of plastic (polypropylene) screen in board manufacturing to improve their weak physical and mechanical properties. The conventional boards were made with conditions of specific gravity 0.40, 0.55, 0.70, and 0.85, resin content 8, 10, 12 and 14%, and number of polypropylene screen 1, 2, 3 and 4, and press-lam boards were also manufactured. The physical and mechanical properties were measured and discussed on thickness swelling, bending modulus of rupture and elasticity, tensile strength, internal bond strength, and screw holding strength. The results obtained at this study were summarized as follows: 1. In thinckness swelling both of pallman chip board and sawdust board were improved by the increase of resin content, and press-lam boards showed lower thickness swelling than conventional boards. 2. Both the modulus of rupture and elasticity were increased with the increase of specific gravity, and press-lam boards showed higher modulus of rupture and elasticity than conventional boards. On the other hand, modulus of rupture was increased with the increase of number of polypropylene screen and resin content whereas these effects in modulus of elasticity was not recognized. 3. Tensile strength was increased with the increase of specific gravity, and the boards combined with polypropylene screen showed higher tensile strength than control boards. Also tensile strength was increased with the increase of number of polypropylene screen, and press-lam boards revealed higher tensile strength than conventional boards. 4. Internal bond strength was increased with the increase of specific gravity, and the boards combined with polypropylene screen were lower in internal bond strength than control boards. Also, the boards combined with odd number of polypropylene screen showed lower internal bond strength than those combined with even number of polypropylene screen. 5. Screw holding strength was increased with the increase of resin content and specific gravity but significant difference was not approved between boards combined with polypropylene screen and control boards. In press-lam boards, pallman chip boards of higher specific gravity but sawdust boards of lower specific gravity showed better screw holding strength than control boards.

  • PDF

Sequential Analysis of Earth Retaining Structures Using p-y Curves for Subgrade Reaction

  • Kim, Hwang;Cha
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.149-164
    • /
    • 1996
  • The sequential behavior of earth retaining structure is investigated by using soil springs in elasto -plastic soil. Mathematical model that can be used to construct the p-y curves for subgrade modulus is proposed by using piecewise linear function. The excavation sequence of retaining wall is analyzed by the beam -column method. Reliability on the developed computer program is verfied through the comparison between the prediction and the in -situ measuidments. It is concluded that the proposed method simulates well the construction sequence and thus represents a significant improvement in the prediction of deflections of anchored wall excavation. Based on the results the proposed method can be effectively used for the evaluation of the relative importance of the parameters employed in a sensitivity analysis.

  • PDF

Approximate Prediction of Soil Deformation Caused by Repeated Loading (반목하중으로 인한 지반의 변형 예측)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.69-81
    • /
    • 1988
  • The Repeated Load Triaxial and Oedometer Tests to the weathered granite & silty clay soil have been fulfilled to investigate their dynarnic characteristics. The results obtained are summarized as follows ; 1. In the relation between the repeated triaxial compression and the oedometer test, the recoverable strain of weathered granite soil showed a tendency to decrease by the increase of the repeated loads number(N), and that of silty clay showed approximately constant values while the total strain increased continuously. 2. The changes of plastic strain was dependent to the level of deviator stress which is the most important element in the calculation of soil deformation under repeated load condition. And there was a significance of 10% between the level of stress and plastic strain. 3. When the soil was aimost dried or saturated to 100%, the deformation by the repeated loads was small. However the deformation showed peak around the saturation of 50%. 4. When the deformation was predicted by the repeated triaxial load tests of a laboratory, it is desirable to introduce the threshold stress concept in the calculation of deformation of subgrade of the pavement. 5. The improved design equation (Eq. 16) introducing the modulus of conversion(Fo), which is based on the Boussineq' s theory, is considered to be rational in the design of flexible pavement. From the above results, the deformation to the repeated traffic loads could be predicted by the repeated triaxial tests on the pavement materials or undisturbed soil layers, therefore it is think that the durable and econornic pavement could be constructed by reflecting that to the design.

  • PDF

Experimental study and calculation of laterally-prestressed confined concrete columns

  • Nematzadeh, Mahdi;Fazli, Saeed;Hajirasouliha, Iman
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.517-527
    • /
    • 2017
  • In this paper, the effect of active confinement on the compressive behaviour of circular steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns is investigated. In STCC columns the axial load is only applied to the concrete core, while in CFST columns the load is carried by the whole composite section. A new method is introduced to apply confining pressure on fresh concrete by laterally prestressing steel tubes. In order to achieve different prestressing levels, short-term and long-term pressures are applied to the fresh concrete. Three groups of STCC and CFST specimens (passive, S-active and L-active groups) are tested under axial loads. The results including stress-strain relationships of composite column components, secant modulus of elasticity, and volumetric strain are presented and discussed. Based on the elastic-plastic theory, the behaviour of the steel tube is also analyzed during elastic, yielding, and strain hardening stages. The results show that using the proposed prestressing method can considerably improve the compressive behaviour of both STCC and CFST specimens, while increasing the prestressing level has insignificant effects. By applying prestressing, the linear range in the stress-strain curve of STCC specimens increases by almost twice as much, while the improvement is negligible in CFST specimens.

Cyclic Deformation and Fatigue Behavior of Short Fiber Reinforced Metal Matrix Composites (단섬유보강 금속복합재료의 반복적 변형 및 피로특성)

  • 양유창;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1422-1430
    • /
    • 1995
  • Al6061 alloy reinforced with 15 volume% of Saffil fibers was fabricated by squeeze infiltration method. Uniform distribution of reinforcements and good bondings between reinforcements and matrix alloy were found in the microstructure of composites. Comparing with A16061 matrix alloy, tensile strength and elastic modulus of $Al_{2}$O$_{3}$/Al composites were increased up to 26% and 31%, respectively. Cyclic deformation and fatigue behavior of $Al_{2}$O$_{3}$/Al metal matrix composites were studied. The specimens were cycled using tension-tension(R=0.1) loading and under load controlled fatigue test. Cyclic stress-displacement curve through fatigue test was obtained. Fatigue strength of $Al_{2}$O$_{3}$/Al composites was about 200 MPa, i.e.0.55 of applied stress level(q). During fatigue test, $Al_{2}$O$_{3}$/Al composites displayed cyclic hardening at all applied stress levels. The most of resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. Displacement-to-failure of the fatigue test was smaller than that of the tensile test because of accumulative damage by cumulative plastic deformation.