• Title/Summary/Keyword: plastic limit analysis

Search Result 233, Processing Time 0.036 seconds

Soil Mechanical Properties for Fill Slope of Forest Road in Mt. Gari (춘천(春川) 가리산(加里山) 지역(地域)의 임도(林道) 성토사면(盛土斜面)의 토질역학적(土質力學的) 특성(特性))

  • Cha, Du Song;Chun, Kun Woo;Ji, Byoung Yun;Oh, Jae Heun
    • Journal of Forest and Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.98-106
    • /
    • 1999
  • This study was carried out to analyze the mechanical properties of soil for counterplan of recovery construction and the slope stability on fill slope of Sang-gul forest road in Mt. Gari. To analyze the mechanical properties of apparent soil on fill slope in forest road, various soils such as soil, gravelly sandy soil, weathered rock were used as experimental sample in this study. In each experimental sample, particle size distribution test, liquid limit test, plastic limit test, and specific gravity test were carried by Korean industrial standards(KS F 2302, KS F 2303, KS F 2304, KS F 2306, KS F 2308). Through the results of soil particle size distribution analysis, soil moisture content analysis, and specific gravity analysis, soil texture, uniformity coefficient, curvature coefficient, dry density and specific gravity were able to be determined in sampling site. As a results in this study, soil was classified as SP, SW, GP by Unified Soil Classification Standard (USCS). specific gravity and dry unit weight of soil have the value range of 2.52~2.60 and 1.39~1.43, respectively. Also plastic index showed non plastic condition.

  • PDF

Development of Stochastic Seismic Performance Evaluation Method for Structural Performance Point Based on Capacity Spectrum Method (역량스펙트럼법을 통한 구조물 성능점의 확률적 기반 내진성능평가기법 개발)

  • Choi, Insub;Jang, Jisang;Kim, JunHee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.523-530
    • /
    • 2017
  • In this study, a method of probabilistic evaluation of the performance point of the structure obtained by capacity spectrum method (CSM) is presented. The performance point of the 4-story and 1-bay steel structure was determined by using CSM according to ATC-40. In order to analyze whether the demand spectrums exceed the performance limit of the structure, the limit displacements are derived for the performance limit of the structure defined from the plastic deformation angle of the structural member. In addition, by selecting a total of 30 artificial seismic wave having the response spectrum similar to the design response spectrum, the fragility curves were derived by examining whether the response spectrum obtained from the artificial seismic wave were exceeded each performance limit according to the spectral acceleration. The maximum likelihood method was used to derive the fragility curve using observed excess probabilities. It has been confirmed that there exists a probability that the response acceleration value of the design response spectrum corresponding to each performance limit exceeds the performance limit. This method has a merit that the stochastic evaluation can be performed considering the uncertainty of the seismic waves with respect to the performance point of the structure, and the analysis time can be shortened because the incremental dynamic analysis (IDA) is not necessary.

Optimization of an Electric Microwave Oven Window Using the Kriging Based Approximation Model (크리깅을 이용한 전자오븐 윈도우 부품용 사출금형의 최적설계)

  • Ryu, M.R.;Kim, Y.H.;Lee, K.H.;Park, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.864-869
    • /
    • 2004
  • It is net easy to predict the shrinkage rate of a plastic injection mold in its design process. The shrinkage rate should be considered as one of the important performances to produce the reliable products. The shrinkage rate can be determined by suing the CAE tools in the design produces. However, since the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. In this study, the surrogate models based on the DACE is used in lien of the original models, facilitating design optimization.

  • PDF

Tensile Analysis of Plasma Spray Coating Material by Classification of AE Signals (Acoustic Emission 파형분류에 의한 플라즈마 용사 코팅재의 인장해석)

  • ;;K. ONO
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.60-65
    • /
    • 2001
  • Thermal spray coating is formed by a process in which melted particles flying with high speed towards substrate, then crash and spread on the substrate surface cooled and solidified in a very short time, Stacking of the particles makes coating. In this study, the exfoliation of $Al_2$O$_3$ and Ni-4.5wt.%Al thermally sprayed coating which were deposited by an atmospheric plasma spray apparatus are investigated using an AE method. A tensile test is conducted on notch specimens in a stress range below the elastic limit of substrate. The wave forms of AE generated from the three coating specimens can be classified by FFT analysis into two types which low frequency(type I waveform is considered to corresponds exfoliation of coating layers and type II waveform corresponds the plastic deformation of notch tip or the resultant fracture of coating. The fracture of the coating layers can estimate by AE event and amplitude, because AE features increase when the deformation generates.

  • PDF

Optimization of an Electron Microwave Oven Window Injection Mold Using Kriging Based Approximation Model (크리깅을 이용한 전자 오븐 윈도우 부품용 사출금형의 최적설계)

  • Ryu M. R.;Lee K. H.;Kim Y. H.;Park H. S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.177-184
    • /
    • 2005
  • Recently, the engineering designer of injection mould has become more and more dependent on the CAE. In the design factors of injection mould, the shrinkage rate should be considered as one of the important performances to produce the reliable products. therefore the shrinkage rate can be mostly calculated by the MoldFlow and Pro-engineering. in the design process. However it is not easy to predict the shrinkage rate of a plastic injection mold in its design process because the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. In this study, the surrogate models, DACE model, based on the Kriging in order to optimize the shrinkage rate of electric microwave oven window is used in lieu of the original models, facilitating design optimization.

Sensitivity Analysis and Optimal design for the Elasto-plastic buckling of Vehicle Structures (차체구조물의 탄소성좌굴에 관한 민감도해석과 최적설계)

  • Won, Chong-Jin;Lee, Jong-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.106-112
    • /
    • 1998
  • Experience and experiments show that in many cases the buckling limit is reached at a much smaller load level than is predicted by linear buckling analysis. In this paper, it is considered linear and nonlinear of plane vehicle structure and estimates design sensitivity of the cross sectional area that is composed plane vehicle structure and performs optimal design. It compares linear vehicle structure with nonlinear vehicle structure for optima design result that is selected constraint condition of buckling load.

  • PDF

Stability Analysis and Reinforced Design Method of Excavation Slopes (굴착사면의 안정해석과 보강설계법)

  • 강예묵;이달원;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.140-154
    • /
    • 1996
  • In this study, displacement, deformation, and stability according to change of cohesion and internal friction angle were investigated through elasto-plastic method, finite-element method, and in-site experiment when excavating soft ground using sheet pile. The results of the study were as follows : 1. The horizontal displacement was 5.5% of the excavation depth by the elasto-plastic method and 3.9% of the excavation depth by the on-site experiment at the final excavation depth(GL-8.Om) on the condition of double stair strut after excavating GL-6.Om. 2. Relationships between cohesion(c) and internal friction angle $({\varphi})$ when safety factor to the penetration depth was 1.2 is shown in the following equations : (a) c= -O.0086$({\varphi})$+ O.3(D=3m) and (b) c=-0.00933$({\varphi})$+0.14(D=4m). 3. The results of elasto-plastic method and the experiment show that possible excavation depth was GL-6.Om after setting single stair strut in a short period in terms of possibility of carrying out on the condition of experimental site on the contrary general reinforcement method, setting double stair strut after excavating GL-4.0m. 4. After setting the strut, distribution of the horizontal displacement had concentrated on the excavation base and possible local failure which the shear strain caused decreased by the strut reinforced. 5. After setting strut, displacement of sheet pile was decreased by half, the limit of stable excavation depth of ground was GL-8.Om, and the maximum horizontal displacement at the GL-8.Om was 1.6% of excavation depth by the elasto-plastic method, 0.7% of excavation depth by the finite-element method.

  • PDF

A Simplified Finite Element Method for the Ultimate Strengh Analysis of Plates with Initial Imperfections (초기결함을 가진 판의 최종강도해석을 위한 간이 유한요소법)

  • Jeom-K.,Paik;Chang-Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.24-38
    • /
    • 1989
  • In this study, an attempt for formulating a new and simplified rectangular finite element having only four corner nodal points is made to analyze the elastic-plastic large deformation behaviour up to the ultimate limit state of plates with initial imperfections. The present finite element contains the geometric nonlinearity caused by both in-plane and out-of-plane large deformation because for very thin plates the influence of the former may not be negligible. Treatment of expanded plastic zone in the plate thickness direction of the element is simplified based upon the concept of plastic node method so that the elastic-plastic stiffness matrix of the element is derived by the simple matrix operation without performing complicated numerical integration. Thus, a considerable saving of the computational efforts is expected. A computer program is also completed based on the present formulation and numerical calculation for some examples is performed so as to verify the accuracy and validity of the program.

  • PDF

Redistribution of Negative Moments in Beams Subjected to Lateral Load (횡하중에 대한 휨재의 부모멘트 재분배)

  • Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.731-740
    • /
    • 2011
  • Provisions for the redistribution of negative moments in KCI 2007 and ACI 318-08 use a method for continuous flexural members subjected to uniformly-distributed gravity load. Moment redistributions and plastic rotations in beams of reinforced concrete moment frames subjected to lateral load differ from those in continuous flexural members due to gravity load. In the present study, a quantitative relationship between the moment redistribution and plastic rotation is established for beams subjected to both lateral and gravity loads. Based on the relationship, a design method for the redistribution of negative moments is proposed based on a plastic rotation capacity. The percentage change in negative moments in the beam was defined as a function of the tensile strain of re-bars at the section of maximum negative moment, which is determined by a section analysis at an ultimate state using KCI 2007 and ACI 318-08. Span, reinforcement ratio, cracked section stiffness, and strain-hardening behavior substantially affected the moment redistribution. Design guidelines and examples for the redistribution of the factored negative moments determined by elastic theory for beams under lateral load are presented.

Application of Response Surface Method for Injection mold Design Optimization (사출금형 설계 최적화를 위한 반응표면 분석법의 적용)

  • 류미라;이권희;김영희;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.223-226
    • /
    • 2004
  • It is net easy to predict the shrinkage rate of a plastic injection mold in its design process. The shrinkage rate should be considered as one of the important performances to produce the reliable products. The shrinkage rate can be determined by suing the CAE tools in the design produces. However, since the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. In this study, the surrogate models based on the RSM is used in lien of the original models, facilitating design optimization.

  • PDF