• Title/Summary/Keyword: plastic film house

Search Result 220, Processing Time 0.029 seconds

Assessment of Soil and Water Quality in some Catchments of Different Agricultural Practices in Nakdong River Basin (낙동강 유역 농업지대에서 영농형태별 토양과 수질 평가)

  • Kim, Min-Kyeong;Seo, Myung-Chul;Lee, Nam-Jong;Chung, Jong-Bae;Kim, Bok-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.16-23
    • /
    • 2003
  • Soil and water quality was monitored in the Nakdong River basin to assess the impact of different agricultural practices. From five catchments, soil samples were collected at three times during 1996 to 1998, and water samples were collected at twelve times on July during 1995 to 1999. The major agricultural practices were paddy and upland farming in three areas surveyed: Youngju, Goryung, and Milyang. Apple orchards were located along in the Imgo-Cheon catchment. Intensive vegetable farming in plastic fIlm house was practiced in the Habin-Cheon catchment. Total N contents, 0.04-0.32%, of paddy soils were low in comparison with those of upland, orchard, and plastic film house soils. Available phosphate($P_2O_5$) contents, $2-421mg\;kg^{-1}$, in plastic film house soils were higher than those in paddy soils. In plastic film house and upland soils, CEC of soils were high. The N concentrations in most of the streams were higher than $1.0mg^{-1}$, the standard of agricultural irrigation water. The P concentrations were above $1.0mg^{-1}$, the standard of agricultural irrigation water and were higher than the minimum level for eutrophication, $0.01-0.05mg\;L^{-1}$ in most of the streams. In conclusion, nutrients by agricultural activity could affect water quality of streams near the agricultural fields. Good water quality in streams can be maintained by proper management of agricultural fields and by decreasing application amount of fertilizers in agricultural fields.

Soil Management Measures for Continuous Melon Cultivation in Plastic Film House (참외 연작장해(連作障害) 대책(對策)을 위(爲)한 효과적(效果的)인 토양관리(土壤管理))

  • Chun, Han-Sik;Kang, Sang Jae;Park, Woo Churl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.351-356
    • /
    • 1997
  • This experiment was aimed to find out the measures or soil managements in continuous melon cultivation and to produce the high quality of yellow melon in plastic film house culture. The experiment was designed with surveying of farmer's field and conducted for 4 years. The most effective measure of soil managements was to cultivate paddy rice in June after harvesting the melon and next ways were treated with submergence or the plastic film for 40days during the period of high temperature of summer and plowed over 50cm depth with plough machine. To decrease the soil problems in continous cultivation, the addition of red earth soil of 500M/T per 10a with increasing the application rates of rice straw and fertilizer (N, P, K) in 30% and 10% respectively was effective in plastic film house culture. The effect of soil amendment application was continued for two years at least and it increased the commercial quality and sugar content in brix of yellow melon in 10% and 2.6 degree respectively.

  • PDF

Effects of Greenhouse Covering Material on Environment Factors and Fruit Yield in Protected Cultivation of Sweet Pepper (파프리카 재배 온실의 피복재 종류에 따른 환경요인과 수량성)

  • Kim, Ho-Cheol;Jung, Sek-Gi;Lee, Jeong-Hyun;Bae, Hyang-Jong
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.253-257
    • /
    • 2009
  • To analysis effect of environment factors on productivity of sweet pepper according to greenhouse covering material (glass, plastic film), this was investigated. In glasshouse, outside light was positively correlated with yield as that $100MJ{\cdot}m^{-2}$ of outside light increased $300{\sim}500g{\cdot}m^{-2}$, also cumulative temperature was same tendency. On possibility of model development for yield estimate cumulative temperature was high than outside light. According to covering material, leaf photosynthesis, productivity per out-side light and term in glasshouse was more high 13%, 46%, and 47% compared with plastic film house, respectively. Result of analysis of effect of light, temperature, and $CO_2$ on yield, relative yield coefficient, yield increment coefficient, and yield reduction coefficient in glasshouse were more high 25%, 73%, and 34% compared with plastic film house, respectively. Hence, sweet pepper's growing in glasshouse compare with plastic film house had more productivity, but that had more sensitivity to charge of environment factors.

Physico-chemical Properties of Disturbed Plastic Film House Soils under Cucumber and Grape Cultivation as Affected by Artificial Accumulation History

  • Han, Kyung-Hwa;Ibrahim, Muhammad;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Hur, Seung-Oh;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.105-118
    • /
    • 2015
  • This study was carried out to investigate the effects of profile disturbance with different artificial accumulation history on physico-chemical properties of soil under plastic film house. The investigations included soil profile description using soil column cylinder auger F10cm x h110cm, in situ and laboratory measurements of soil properties at five sites each at the cucumber (Site Ic ~ Vc) and grape (Site Ig ~ Vg) plastic film houses with artificial soil accumulation. The sites except sites Ic, IVc, IVg and Vg, belong to ex-paddy area. The types of accumulates around root zone included sandy loam soil for 3 sites, loam soil for 1 site, saprolite for 2 sites, and multi-layer with different accumulates for 3 sites. Especially, Site IIg has mixed plow zone (Ap horizon) with original soil and saprolite, whereas disturbed soil layers of the other sites are composed of only external accumulates. The soil depth disturbed by artificial accumulation ranged from 20 cm, for Site IIg, to whole measured depth of 110 cm, for Site IVc, Vc, and Site IVg. Elapsed time from artificially accumulation to investigation time ranged from 3 months, Site IIc, to more than 20 years, Site Vg, paddy-soil covering over well-drained upland soil during land leveling in 1980s. Disturbed top layer in all sites except Site Vg had no structure, indicating low structural stability. In situ infiltration rate had no correlation with texture or organic matter content, but highest value with highest variability in Site IIIc, the shortest elapsed time since sandy loam soil accumulation. Relatively low infiltration rate was observed in sites accumulated by saprolite with coarse texture, presumably because its low structural stability in the way of weathering process could result in relatively high compaction in agro-machine work or irrigation. In all cucumber sites, there were water-transport limited zone with very low permeable or impermeability within 50 cm under soil surface, but Site IIg, IIIg, and Vg, with relatively weak disturbance or structured soil, were the reverse. We observed the big change in texture and re-increase of organic matter content, available phosphate, and exchangeable cations between disturbed layer and original soil layer. This study, therefore, suggest that the accumulation of coarse material such as saprolite for cultivating cash crop under plastic film house might not improve soil drainage and structural stability, inversely showing weaker disturbance of original soil profile with higher drainage.

A Modified Methodology of Salt Removal through Flooding and Drainage in a Plastic Film House Soil (시설재배지에서 토양 담수 및 배수에 의한 염류집적 경감 방안)

  • Oh, Sang-Eun;Son, Jung-Su;Ok, Yong-Sik;Joo, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.565-571
    • /
    • 2010
  • One of the disadvantages of flooding treatment for desalting from soils is that salts move to deep soils after flooding and at the end reaccumulate at the soil surface through capillary movements. This study was carried out to remove salts from soils in plastic film houses by a modified flooding method, drainage after flooding. The method successfully removed salts at the soil surface and salts did not move to the deep soil. Drained water containing N, P and K could be reused as fertilizer. By applying small amount of MgO, turbidity of water flooded decreased in 30 min by 95%. Struvite should be formed since the flooded water contain ammonia and phosphorous and their concentrations were decreased. This could be utilized as fertilizer which provides a slow-release source of phosphorus, magnesium and nitrogen that features low inherent water solubility.

2 Cropping systems using field crops in unheated plastic house at paddy field

  • Shin, Jung-Ho;Moon, Jin-Young;Song, Jae-Ki;Choi, Yong-Jo;Hong, Kwang-Pyo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.279-279
    • /
    • 2017
  • In Korea, the single span unheated plastic house cultivated crops from autumn to spring of the following year, removed the plastic film and frame, cultivated rice, set up a plastic house again and cultivated crops. The crops in the greenhouse are utilized mainly for the production of leaf vegetables such as lettuce, leek, and fruit vegetables such as strawberry, watermelon, oriental melon, etc. and raising high income. Because, the production of these crops has characteristics requiring a lot of labor and it is difficult to produce horticultural crops at unheated plastic houses as the rural population ages. Therefore, we conducted a test to develop a crop planting system to cultivate crops in single span unheated plastic houses, although the utilization of labor is less than that of horticultural crops. The prior cropping cultivated three cultivars of sweet potatoes early, the second produced cultivated sweet potatoes, corn and soybeans. In the cultivation of the previous cropping, the sweet potatoes were harvested on the 113th day after planting on March 30th, the yield was 822 kg/10a for Pungwonmi, 1,377 kg/10a for Jinhongmi, 1,483 kg/10a for the Dahomi. Because of differences, the yield of Pungwonmi cultivar was less than that other cultivars and the yield of open field cultivations, we will expect further research. In the cultivation of the succeeding crops sweet potatoes were planted on July 27 and harvested 110 days later and investigated. The product yield of Pungwonmi cultivar was 1,024 kg/10a, and the Jinhongmi, Dahomi cultivars were not at economic level for sale and were necessary to review. In succeeding-crops, corn tested the Ilmichal cultivar, seeded on 27th July, harvested on October 11th. The day of silking was 45 days after sowing, the yield was 1,156 kg/10a, the goods rate was 100% level. The beans in the succeeding cultivation crop were sowed on 27th July, the early maturing of the varieties coming to Hwangeumol and Saeol cultivar, on 17th October, the late maturing soybean Daewonkong cultivar were harvested on October 21st. The yield of early maturing two cultivars was 214 kg/10a, Daewonkong was 257 kg/10a, and 100 seeds weight which were more than the early maturing beans were also heavy. When calculating these incomes price-wise according to the harvest time, we were able to consider the income in the order of corn, sweet potato and soybean from the second term crop. Various studies such as varieties, mulching method, moisture management, control environment management, etc. are considered necessary to develop cropping systems with sweet potato and field crops in future unheated plastic house.

  • PDF

Available Phosphours Phosphorus and Electrical Conductivity of the Saturated Extracts of Soils from the Plastic Film Houses (포화침출액법에 의한 시설하우스 토양의 유효인산과 전기전도도)

  • Jung, Yeong-Sang;Cho, Su-Hyun;Yang, Jae E.;Kim, Jeong-Je;Um, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Management of phosphorus availability in the plastic film house soils in Korea merits attention because salts have been accumulated for last decades due to the heavy application of fertilizers and intensive cropping practices. In an attempt to characterize the P availability, available phosphorus contents and electrical conductivity of the saturated extracts ($EC_e$) were measured for soils collected from the 169 plastic film houses in Kangwon-do. Soil phosphorus contents were analyzed by methods of Lancaster, Bray No. 1, Olsen, Truog, water extractable and saturation extracts. Phosphorus concentrations in the saturated extracts of the plastic film house soils ranged from 0.02 to $34mg\;L^{-1}$, with the average of $8mg\;L^{-1}$. The available $P_2O_5$ of the soils ranged from 136 to $3,689mg\;Kg^{-1}$, with the average of $1,261mg\;Kg^{-1}$. The water soluble $P_2O_5$ ranged from 2 to $118mg\;L^{-1}$, with the average of $39mg\;L^{-1}$. A significant correlation existed between saturation extract P (Y) and available $P_2O_5$ (X) [Y = -5.075 + 0.018X, $r=0.662^{***}$] indicating $1.0mg\;P\;L^{-1}$ of in the saturated extract was equivalent to $337mg\;Kg^{-1}$ of the available $P_2O_5$ by Lancaster method. Electrical conductivity of the saturated pastes ($EC_e$) was highly significantly correlated with EC (1:5), yielding the slope of 12.2 for the coarse textured plastic film house soils. Results of higher concentrations of available P in soil solution and dilution factor of 12.2 for $EC_e$ demonstrate that a special care must be taken in terms of fertilizer management and data interpretation for soils under this specific condition.

  • PDF

Fertilizer Recommendation Based on Soil Testing for Tomato in Plastic Film House (토양검정에 의한 시설재배 토마토의 적정 시비량 추천)

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.350-358
    • /
    • 1998
  • To determine the optimum application of fertilizers for the cultivation of tomato in plastic film house, eighteen soils which contained different salt contents were taken from four different areas under plastic film house cultivation, Youngdong, Boeun, Cheongweon county, and Cheongju city. The dry weight and the amount of N, P, and K uptakes of tomato in the plot with no fertilization were considered as the factors representing the fertility of the soil. The differences in the dry weight and in the amounts of N, P, and K uptakes of plants between the plots with fertilization and with no fertilization were considered as the factors representing the total effect of fertilizer and the effects of fertilizer N, P, and K, respectively. These factors of soil fertility and fertilizer effects were estimated by correlation and regression with the chemical properties of the soil in order to find the critical levels and recommended method for optimum fertilization of tomato. The standardized partial regression coefficients of inorganic nitrogen ($NO_3-N+NH_4-N$) contents in soil for the factors of fertility ranged from 247 to 1,159, showing the best, while those of the others ranged from 0.02 to 4.02. Those of inorganic nitrogen ($NO_3-N+NH_4-N$) contents in soil for the electrical conductivity were also the best and were ranged from 35.2 to 36.0 compared with the values of less than 1.0 of the others. These results demonstrate that the content of inorganic nitrogen in the soil is the best index for both soil fertility and electrical conductivity of the soil. The critical level of inorganic nitrogen ($NO_3-N+NH_4-N$) in the soil for maximum productivity with zero value of fertilizer effects for tomato, estimated through Cate-Nelson split method was $220mg\;kg^{-1}$. This was the same value as evaluation for the cultivation of chinese cabbage. In conclusion, for optimal application of fertilizer in plastic film house, 1) no fertilization is recommended when the contents of inorganic nitrogen in the soil is more than $220mg\;kg^{-1}$; however, 2) in the case of less than $220mg\;kg^{-1}$ of inorganic nitrogen content in the soil, the optimal level of fertilization could be estimated through the regression equation between fertilizer effects and content of inorganic nitrogen in the soil.

  • PDF

Chemical Properties of the Horticultural Soils in the Plastic Film Houses in Korea (우리나라 시설원예(施設園藝) 재배지(栽培地) 토양(土壤) 화학적특성(化學的特性))

  • Jung, Beung-Gan;Choi, Jeong-Weon;Yun, Eul-Soo;Yoon, Jung-Hui;Kim, Yoo-Hak;Jung, Goo-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • A survey was conducted to investigate the chemical properties of soils such as pH, electrical conductivity, total organic matter content, soluble nitrate, available phosphate and major exchangeable canons, in plastic film houses at 513 sites. All the parameters surveyed in the plastic film house were much higher than those of open field soils. Particularly conspicuous was the accumulation of available P, exchangeable K and the occurrence of nitrate at relatively high concentration in both top soil(0-20 cm) and sub-soil(20-40 cm). In 70-80% of cases, the contents of available P and exchangeable K in top soils, were found to be higher than optimum levels. There was positive linear correlation between the content of exchangeable rations, and nitrate and EC of soils. The correlation coefficient was greater in the order of nitrate-EC > Mg-nitrate > K-nitrate > Ca-nitrate. The successive cultivation of horticultural crops in the plastic houses tended result in the accumulation of available P, exchangeable K and total organic matter in the soil.

  • PDF

Optimum Fertilization Based on Soil Testing for Chinese Cabbage Cultivation in Plastic Film Houses (시설재배지 토양 검정에 의한 배추의 적정 시비량)

  • Hong, Soon Dal;Kang, Bo Goo;Kim, Jai Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.16-24
    • /
    • 1998
  • To determine the optimum application of fertilizers for the cultivation of Chinese cabbage in plastic film house, twenty soils which contain different salts contents were taken from 4 different area of plastic film house cultivation, Youngdong. Boeun county, Cheongweon county, and Cheongju city. The dry weight and the amount of N. P, and K uptakes of Chinese cabbage in the plot of no fertilization were considered as the factors representing the fertility of the soil. And a difference of dry weight and the amounts of N, P, and K uptakes of plants between the plot of fertilization and no fertilization were considered as the factors representing the total effect of fertilizer and fertilizer N, P, and K effects. respectively. These factors of soil fertility and fertilizer effects were estimated by correlation and regression with soil tests in order to find the critical levels and recommended method for optimum fertilization of Chinese cabbage. Chinese cabbage transplanted in two soils, having the electrical conductivity of 9.3 and 15.2 dS/m, were not able to root due to the salts toxicity. The content of inorganic N, the electrical conductivity, and CEC were founded to have significant correlation with the factors of both the soil fertility and fertilizer effects for the cultivation of Chinese cabbage. To determine the weighting degree for the productivity and the fertilizer effects, the standardized partial regression coefficient was analyzed by regression among the factors of fertility, the fertilizer effects, and the soil tests. The coefficient for inorganic N($NH_4-N$ and $NO_3-N$) was obtained as the absolute value of 756-1871 and this value was extremely higher than those of other soil tests which was 0.07-4.11. These results suggested that the content of inorganic N is the best tests for the estimation of the productivity and the fertilizer effects for the cultivation of Chinese cabbage in plastic film house. The critical level of inorganic N($NH_4-N+NO_3-N$) estimated by Cate-Nelson split method for maximum productivity and zero point of fertilizer effect was 220 mg/kg for all the factors of estimation. These results suggested that no application of fertilizer N. P, and K is required at the critical level of inorganic N of soil. Consequently the optimum application of fertilizer N, P, and K for the cultivation of Chinese cabbage in plastic film house was possible to determine by the critical level of inorganic N of soil. The critical level of electrical conductivity was estimated as 2.8 dS/m by the same method.

  • PDF