• Title/Summary/Keyword: plastic film house

Search Result 220, Processing Time 0.031 seconds

Effect of Azospirillum brasilense and Methylobacterium oryzae Inoculation on Growth of Red Pepper (Capsicum annuum L.)

  • Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • Plant growth-promoting effects of rhizobacterial inoculation obtained in pot experiments cannot always be dependably reproduced in fields. In this study, we investigated the effect of inoculation with Azospirillum brasilense and Methylobacterium oryzae, which have displayed growth promoting effects in several pot experiments, on growth and fruit yield of red pepper under field condition in a plastic-film house. Four rows spaced 90 cm apart were prepared after application of compost ($10Mg\;ha^{-1}$), and red pepper seedlings (Capsicum annum L., Nocgwang) were transplanted in each row with 40-cm space. Experimental treatments were consisted of A. brasilense CW903 inoculation, M. oryzae CBMB20 inoculation, and uninoculated control. Twelve plots, 10 plants per plot, were allotted to the three treatments with four replicates in a completely randomized design. At the time of transplanting, 50 mL of each inoculum ($1{\times}10^8cells\;mL^{-1}$) was introduced into root zone soil of each plant, and re-inoculated at 7 and 14 days after transplant. Plant growth and fruit yield were measured during the experiment. Both A. brasilense CW903 and M. oryzae CBMB20 could not promote growth of red pepper plants. All growth parameters measured were not significantly different among treatments. There were large variations in fruit yield recorded on plot basis, and no statistically significant differences were found among treatments. The failure to demonstrate the expected plant growth promoting effect of the inoculants is possibly due to various environmental factors, including weather and soil characteristics, reducing the possibility to express the potential of the inoculated bacterial strains.

Effects of Water Stress on Leaf Orientation, Apparent Photosynthetic Rate, Transpiration Rate, Yield and Its Related Traits in Soybean Plants (한발조건이 콩식물체의 엽운동, 광합성능, 증산량, 수량 및 관련 형질에 미치는 영향)

  • 천종은;김진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.4
    • /
    • pp.313-319
    • /
    • 1992
  • To investigate effects of water stress on apparent photosynthetic, transpiration rates, leaf orientation, yield and its related traits, four soybean varieties were planted on the Wagner pots in a plastic house covered with polyethylene film. As the light intensity and leaf temperature in a day increased, the movement of central leaflet in the second leaf of main stem occurred earlier than that of the lateral leaflet. The apparent photosynthetic rate of the central leaflet was higher than that of the lateral leaflet, but light intercept and leaf temperature of lateral leaflet were higher than those of the central leaflet. The apparent photosynthetic rate had highly positive correlation with the photon flux density, stomatal conductance and temperature, respectively. The photon flux density, stomatal conductance, transpiration and photosynthetic rates in the control were significantly higher than those in the water stress plot. The yield and its related traits in the water stress plot became decreased significantly in comparison with the control.

  • PDF

Effects of reduced additional fertilizer on tomato yield and nutrient contents in salt accumulated soil (시설재배지 염류집적 토양에 대한 추비 저감 처리가 토마토 수량 및 양분함량에 미치는 영향)

  • Lim, Jung-Eun;Ha, Sang-Keun;Lee, Ye-Jin;Yun, Hye-Jin;Cho, Min-Ji;Lee, Deog-Bae;Sung, Jwa-Kyung
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.423-429
    • /
    • 2015
  • This study was conducted to evaluate the effects of reduced nitrogen (N) and potassium (K) fertigation as additional fertilizer on tomato yield and nutrient contents in excessively nutrients-accumulated soil. Shoot and root dry weights (DW), dry matter rate for shoot, root and fruit and number of fruit in both AF50 and AF100 (50 and 100% levels of additional fertilizer) treatments were increased in comparison with those in AF0 (0% level of additional fertilizer) treatment. In case of nutrient uptake by tomato, nitrogen, phosphorous (P) and potassium contents in all tomato parts (leaf, stem, root and fruit) in AF50 and AF100 treatment were lower than those in AF0 treatment. On the contrary, soluble sugar and starch contents in all tomato parts in AF50 and AF100 were higher than those in AF0 treatment. There were differences between AF0 and AF50 or AF100 in tomato growth, yield, nutrient level and contents of soluble sugar and starch. In contrast, the level and initiation point of fertigation did not significantly affect the parameters. Based on our results, the application of properly reduced level of additional fertilizer is possible to maintain the productivity of tomato and alleviate the nutrient accumulation in plastic film house soils.

The Effect of Soil Water Content during at Fruit Ripening Stage on Yield and Quality in Musk melon (머스크멜론의 과실성숙기 토양수분이 수량과 품질에 미치는 영향)

  • 권준국;이재한;엄영철;김회태;최영하;박동금
    • Journal of Bio-Environment Control
    • /
    • v.7 no.4
    • /
    • pp.330-335
    • /
    • 1998
  • To investigate the effect of soil water control on yield and quality of musk melon in plastic film house, irrigation points were treated with -10, -20, -30, -50 and -100 kPa by 10mm dripping each time at fruit developing and ripening stage, respectively. Fresh weight of stem and leaves was not significant among irrigation points, but percentage of dry matter was highest at -100kPa and lowest at -10kPa. Marketable yield was not different among -50kPa, -100kPa, -30kPa and -20kPa and lowest at -10kPa. Sugar content of the flesh fruit at ripening stage was 15.1 $^。/Brix at -50kPa and 14.4 $^。/Brix at -10kPa Therefore, optimum irrigation point at ripening stage of fruit is -50kPa by 10mm dripping each time. time.

  • PDF

Stem Rot of Sweet Potato (Ipomoea batatas) Caused by Sclerotium rolfsii in Korea (Sclerotium rolfsii에 의한 고구마 흰비단병)

  • Kim, Ju-Hee;Kim, Shin-Chul;Cheong, Seong-Soo;Choi, Kyu-Hwan;Kim, Du-Yeon;Shim, Hong-Sik;Lee, Wang Hyu
    • Research in Plant Disease
    • /
    • v.19 no.2
    • /
    • pp.118-120
    • /
    • 2013
  • During the early spring of 2007 to 2009, stem rot of sweet potato (Ipomoea batatas L.) caused by Sclerotium rolfsii occurred in seedling stage grown in plastic film house at Iksan. In seedling stage of sweet potato, symptoms were initially appeared in yellowing and then the seedlings were eventually wilted. The fungus produced abundant white silky mycelium on infected tissues and soil line. Seedlings were very susceptible and died quickly once they were infected. The whole area of a petridish was rapidly covered with white mycelium on agar medium. Sclerotia began to produce after 7 days of mycelial growth and white sclerotia quickly melanized to a dark brown coloration. The causal agent isolated from the diseased plants was identified as Sclerotium rolfsii Saccardo on the basis of the morphological and cultural characteristics. All isolates of S. rolfsii caused similar symptoms on the host petioles by artificial inoculation.

Short-term Effect of Phosphogypsum on Soil Chemical Properties

  • Chung, Jong-Bae;Kang, Sun-Chul;Park, Shin
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.317-324
    • /
    • 2001
  • Short-term effect of phosphogypsum on soil properties including acidification, salinity and metal availability were investigated under laboratory and field conditions. Phosphogypsum and mixtures of phosphogypsum and compost were added to soil and incubated in a laboratory condition with 15% moisture content. Phosphogypsum treatments were 2.5 and 5.0 g/kg soil and in the treatments of phosphogypsum and compost mixture 10 g of compost was added additionally. After the 30 days of incubation, an additional phosphogypsum and/or compost were added to the remaining soils at the same rates of the first treatments. pH, electrical conductivity, and available hazardous elements were measured periodically during the incubation. Field experiment was conducted in a plastic film house of mellon with four treatments of phosphogypsum and compost mixtures - 25+125, 50+125, 50+250 and 100+250 kg/165 $m^2$. pH, electrical conductivity, and hazardous elements in soil and total hazardous elements in leaf were measured. In the laboratory experiment, after 30 days of the first phosphogypsum application, soil pHs were lowered by 0.7-0.8 units. After the second treatment of phosphogypsum 0.2 units of additional acidification occurred. However, acidification was not observed in the soils treated with mixtures of phosphogypsum and compost. In the laboratory experiment, phosphogypsum treatments increased electrical conductivity very significantly. In field experiment, pH and electrical conductivity of soils treated with phosphogypsum were nearly the same as those of soil not treated with phosphogypsum. Since soil condition in the field study was an open system, the free acids and salts derived from phosphogypsum could be diffused down with water leaching through the soil profile and then any significant acidification or salt accumulation in the topsoil could not be observed. In both laboratory and field experiments, levels of available hazardous elements in soils treated with phosphogypsum were quite low and not different from the levels found in the control soil. Results obtained from this study suggest that application of phosphogypsum at appropriate rates on agricultural land appears of no concern in terms of acidity, salinity and hazardous element content of soil.

  • PDF

Effect of Girdling on the Flowering and Yield in Scion Rooted 'Shiranuhi' Mandarin grown in Plastic Film House (부지화 자근발생 감귤나무의 착화와 수량에 미치는 환상박피의 영향)

  • Kang, Seok-beom;Moon, Young-eel;Han, Seung-gab;Lee, Hye-jin;Choi, Yeong-hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.256-262
    • /
    • 2016
  • BACKGROUND: 'Shiranuhi' mandarin is one of the popular citrus cultivars in Jeju Island, Korea. However, the emergence of scion roots since the past few years has altered its flowering, fruiting, and quality. Girdling of branches is one of the methods of increasing flowering in citrus trees. METHODS AND RESULTS: This experiment was conducted to determine the effect of girdling on the flowering and yields of scion rooted 'Shiranuhi' mandarin hybrid. We selected normal trees without scion roots as controls. The trees with scion roots were divided into two groups: trees without girdling and with girdling on main branches. Each group contained five replications and the experiment was conducted in Gosan and Harye of Jeju Island. The scion rooted trees revealed severely decreased flowering and low flowering/leaf ratios; however, the leaf/fruit ratio significantly increased. But, girdling on main branches significantly increased flowering and the flowering/leaf ratio. In the scion rooted trees, yields dropped due to poor flowering; however, girdling of branches efficiently improved the yields of the trees. Fruit quality, fruit size, and fruit weight of scion rooted trees were low in comparison with the control, whereas girdling of the branches improved flowering and the fruit weight to some extent. No significant difference in soluble solid contents was observed. CONCLUSION: Girdling is an effective method to induce flowering of the scion rooted 'Shiranuhi' mandarin trees. In addition, yields of scion rooted trees were improved.

Fertilization of N and Si to Sustain Grain Yield and Growth Characteristics of Rice after Winter Greenhouse Water-melon Cropping

  • Cho, Young-Son;Jeon, Weon-Tae;Park, Chang-Young;Park, Ki-Do;Kang, Ui-Gum;Muthukumarasamy, Ramachandran
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.505-512
    • /
    • 2006
  • In Korea, silicate fertilization (SF) is being practiced every four years to enhance rice production. However, the relationship between nitrogen (N) and SF in view of growth characteristics and grain yield of rice has not been examined after watermelon cropping in plastic film house. This study was carried out to identify useful critical N and Si fertilizer levels to sustain grain yield and to improve N use efficiency for rice. The watermelon-rice cropping system has maintained for three seasons in each year from 1998 to 2001 by farmer before this experiment. Experiments on N and Si fertilization levels were evaluated with Hwayoungbyeo (Oryza sativa L.) in 2002 and 2003 at Uiryeong, Korea. The goal of this experiment was to find out the optimum N and Si levels to sustain rice yield by reducing excessive N fertilizer in watermelon-rice cropping system. Nitrogen fertilization (NF) levels were three ($0,\;57,\;114kg\;ha^{-1};0,\;50,\;100%$ of conventional NF amount) and five (0, 25, 50, 75, 100%) in 2002 and 2003, respectively, and combined with three SF levels ($70,\;130,\;180mg\;kg^{-1};100,\;150,\;200%$ which were adjusted with Si fertilizer in soil) were evaluated for the improvement of N and Si fertilization level in both years. Rice yielded 3.98-5.95 and 2.84-4.02 t/ha in 2002 and 2003, respectively. Our results showed the combinations of 50% and 100% of N with 200% level of Si produced the highest grain yield in both years, respectably. The grain yield was greatly improved in plot of N25% level when compared to conventional NF (Nl00%) in 2003. In conclusion, NF amount could be reduced about 50% compared to recommended level by specific fertilization of N and Si combination levels for rice growing and grain yield after cultivation watermelon in paddy field.

Effects of Organic Acids on Availability of Phosphate and Growth of Corn in Phosphate and Salts Accumulated Soil

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.265-270
    • /
    • 2016
  • Accumulated Phosphate can be released by ligand exchange reaction of organic acids. The objective of this study was to evaluate effects of the organic acids on the availability of phosphate and the growth of crop in phosphate and salts accumulated soil. Soil samples were collected from farmer's plastic film house. Available phosphate and electrical conductivity of soil were $3,005mg\;kg^{-1}$ and $16.63mg\;kg^{-1}$ which were 6 and 8 times higher than the optimum range of soil for crop growth, respectively. Corns were cultivated in pots for 2 months. Treatments were no treatment (control), phosphate fertilizer (P), citric acid (CA) 1, 5, 10 mM, and oxalic acid (OA) 1, 5, 10 mM. Water soluble phosphorus, available phosphate, corn growth and uptake were determined after cultivation. Results showed that organic acids increased water soluble phosphorus and available phosphate. For the level of 10 mM, the order of effectiveness of organic acids for water soluble P was citric acid (44%) > oxalic acid (32%). Height and dry weight of corns were increased significantly by the treatment of citric acid 1 and 5 mM. Also, corn absorbed more phosphorus, nitrogen, potassium, calcium and magnesium in the treatment of citric acid 1 mM than these of other treatments. Even though phosphate availability of soil was enhanced by addition of citric acid 10 mM, the growth of corns decreased because high concentration of citric acid caused salt damage by increasement of electrical conductivity. Thus, the citric acid of 1 mM has the potential to improve the availability of phosphate and the healthy growth of corns.

Soil Quality Assessment Method of Paddy and Upland (논과 밭토양의 질 평가 방법)

  • Yoon, Jung-Hui;Jung, Beung-Gan;Jun, Hee-Joong;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.357-364
    • /
    • 2004
  • Modern agriculture depending on chemicals such as fertilizers and pesticides gave rise to questions about long-term sustainability of agriculture in relation to degradation of soil quality. Improving soil quality is prerequisite to sustain biological productivity, maintain environmental quality, and promote plant and animal health. Assessment and monitoring of the health and quality of soil is necessary to provide opportunity to evaluate and redesign soil management system for sustainability. To develop the soil quality assessment method, we collected national data on soil properties of paddy and upland and attempted to evaluate the data in aspect of soil quality by the process of selecting a minimum data set (MDS), scoring the soil properties and calculating soil quality index (SQI) integrating the score of each soil property. This approximation indicated that soil quality index was in the order of paddy soil, upland soil and plastic film house soil.