• Title/Summary/Keyword: plastic equivalent strain

Search Result 126, Processing Time 0.021 seconds

Residual seismic performance of steel bridges under earthquake sequence

  • Tang, Zhanzhan;Xie, Xu;Wang, Tong
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.649-664
    • /
    • 2016
  • A seismic damaged bridge may be hit again by a strong aftershock or another earthquake in a short interval before the repair work has been done. However, discussions about the impact of the unrepaired damages on the residual earthquake resistance of a steel bridge are very scarce at present. In this paper, nonlinear time-history analysis of a steel arch bridge was performed using multi-scale hybrid model. Two strong historical records of main shock-aftershock sequences were taken as the input ground motions during the dynamic analysis. The strain response, local deformation and the accumulation of plasticity of the bridge with and without unrepaired seismic damage were compared. Moreover, the effect of earthquake sequence on crack initiation caused by low-cycle fatigue of the steel bridge was investigated. The results show that seismic damage has little impact on the overall structural displacement response during the aftershock. The residual local deformation, strain response and the cumulative equivalent plastic strain are affected to some extent by the unrepaired damage. Low-cycle fatigue of the steel arch bridge is not induced by the earthquake sequences. Damage indexes of low-cycle fatigue predicted based on different theories are not exactly the same.

Fracture Estimation of Stiffened Plates under Impact Loading using Micromechanics Plasticity Model (미시역학 소성모델을 이용한 충격하중을 받는 보강판의 파단 예측)

  • Choung, Joon-Mo;Cho, Sang-Rai;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.611-621
    • /
    • 2009
  • This paper first reviews the physical meanings and the expressions of two representative strain rate models: CSM (Cowper-Symonds Model) and JCM (Johnson-Cook Model). Since it is known that the CSM and the JCM are suitable for low-intermediate and intermediate-high rate ranges, many studies regarding marine accidents such as ship collision/grounding and explosion in FPSO have employed the CSM. A formula to predict the material constant of the CSM is introduced from literature survey. Numerical simulations with two different material constitutive equations, classical metal plasticity model based on von Mises yield function and micromechanical porous plasticity model based on Gurson yield function, have been carried out for the stiffened plates under impact loading. Simulation results coincide with experimental results better when using the porous plasticity model.

Modeling of Size-Dependent Strengthening in Particle-Reinforced Aluminum Composites with Strain Gradient Plasticity (변형률 구배 소성을 고려한 입자 강화 알루미늄 복합재의 크기 종속 강화 모델링)

  • Suh, Yeong-Sung;Park, Moon-Shik;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.745-751
    • /
    • 2011
  • This study proposes finite element modeling of dislocation punching at cooling after consolidation in order to calculate the strength of particle-reinforced aluminum composites. The Taylor dislocation model combined with strain gradient plasticity around the reinforced particle is adopted to take into account the size-dependency of different volume fractions of the particle. The strain gradients were obtained from the equivalent plastic strain calculated during the cooling of the spherical unit cell, when the dislocation punching due to CTE (Coefficient of Thermal Expansion) mismatch is activated. The enhanced yield stress was observed by including the strain gradients, in an average sense, over the punched zone. The tensile strength of the SiCp/Al 356-T6 composite was predicted through the finite element analysis of an axisymmetric unit cell for various sizes and volume fractions of the particle. The predicted strengths were found to be in good agreement with the experimental data. Further, the particle-size dependency was clearly established.

Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface (극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제2부 파단 변형률 평면의 정식화)

  • Chong, Joonmo;Park, Sung-Ju;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.454-462
    • /
    • 2015
  • An extended study was conducted on the fracture criterion by Choung et al. (2011; 2012) and Choung and Nam (2013), and the results are presented in two parts. The theoretical background of the fracture and the results of new experimental studies were reported in Part I, and three-dimensional fracture surface formulations and verifications are reported in Part II. How the corrected true stress can be processed from the extrapolated true stress is first introduced. Numerical simulations using the corrected true stress were conducted for pure shear, shear-tension, and pure compression tests. The numerical results perfectly coincided with test results, except for the pure shear simulations, where volume locking appeared to prevent a load reduction. The average stress triaxialities, average normalized lode parameters, and equivalent plastic strain at fracture initiation were extracted from numerical simulations to formulate a new three-dimensional fracture strain surface. A series of extra tests with asymmetric notch specimens was performed to check the validity of the newly developed fracture strain surface. Then, a new user-subroutine was developed to calculate and transfer the two fracture parameters to commercial finite element code. Simulation results based on the user-subroutine were in good agreement with the test results.

A Study on Welding Deformation of thin plate block in PCTC (PCTC 박판 블록 용접 변형에 관한 연구)

  • Kang, Serng-Ku;Yang, Jong-Su;Kim, Ho-Kyeong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.97-97
    • /
    • 2009
  • The use of thin plate increases due to the need for light weight in large ship. Thin plate is easily distorted and has residual stress by welding heat. Therefore, the thin plate should be carefully joined to minimize the welding deformation which costs time and money for repair. For one effort to reduce welding deformation, it is very useful to predict welding deformation before welding execution. There are two methods to analyze welding deformation. One is simple linear analysis. The other is nonlinear analysis. The simple linear analysis is elastic analysis using the equivalent load method or inherent strain method from welding experiments. The nonlinear analysis is thermo-elastic analysis which gives consideration to the nonlinearity of material dependent on temperature and time, welding current, voltage, speed, sequence and constraint. In this study, the welding deformation is analyzed by using thermo-elastic method for PCTC(Pure Car and Truck Carrier) which carries cars and trucks. PCTC uses thin plates of 6mm thickness which is susceptible to welding heat. The analysis dimension is 19,200mm(length) * 13,825mm(width) * 376mm(height). MARC and MENTAT are used as pre and post processor and solver. The boundary conditions are based on the real situation in shipyard. The simulations contain convection and gravity. The material of the thin block is mild steel with $235N/mm^2$ yield strength. Its nonlinearity of conductivity, specific heat, Young's modulus and yield strength is applied in simulations. Welding is done in two pass. First pass lasts 2,100 second, then it rests for 900 second, then second pass lasts 2,100 second and then it rests for 20,000 second. The displacement at 0 sec is caused by its own weight. It is maximum 19mm at the free side. The welding line expands, shrinks during welding and finally experiences shrinkage. It results in angular distortion of thin block. Final maximum displacement, 17mm occurs around welding line. The maximum residual stress happens at the welding line, where the stress is above the yield strength. Also, the maximum equivalent plastic strain occurs at the welding line. The plastic strain of first pass is more than that of second pass. The flatness of plate in longitudinal direction is calculated in parallel with the direction of girder and compared with deformation standard of ${\pm}15mm$. Calculated value is within the standard range. The flatness of plate in transverse direction is calculated in perpendicular to the direction of girder and compared with deformation standard of ${\pm}6mm$. It satisfies the standard. Buckle of plate is calculated between each longitudinal and compared with the deformation standard. All buckle value is within the standard range of ${\pm}6mm$.

  • PDF

Ballistic impact analyses of triangular corrugated plates filled with foam core

  • Panigrahi, S.K.;Das, Kallola
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.139-154
    • /
    • 2016
  • The usage of sandwich structure is extensively increasing in lightweight protective structures due to its low density and other useful properties. Sandwich panels made of metal sheets with unfilled cellular cores are found to exhibit lower deflections by comparing to an equivalent monolithic plate of same metal and similar mass per unit density. However, the process of localized impact on solid structures involving plastic deformation, high strain rates, temperature effect, material erosion, etc. does not hold effectively as that of monolithic plate. In present work, the applications of the sandwich plate with corrugated core have been extended to develop optimized lightweight armour using foam as medium of its core by explicit finite element analysis (FEA). The mechanisms of hardened steel projectile penetration of aluminum corrugated sandwich panels filled with foams have been numerically investigated by finite element analysis (FEA). A comparative study is done for the triangular corrugated sandwich plate filled with polymeric foam and metallic foam with different densities in order to achieve the optimum penetration resistance to ballistic impact. Corrugated sandwich plates filled with metallic foams are found to be superior when compared to the polymeric one. The optimized results are then compared with that of equivalent solid and unfilled cores structure to observe the effectiveness of foam-filled corrugated sandwich plate which provides an effective resistance to ballistic response. The novel structure can be the alternative to solid aluminum plate in the applications of light weight protection system.

Energy equivalent lumped damage model for reinforced concrete structures

  • Neto, Renerio Pereira;Teles, Daniel V.C.;Vieira, Camila S.;Amorim, David L.N.F.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.285-293
    • /
    • 2022
  • Lumped damage mechanics (LDM) is a recent nonlinear theory with several applications to civil engineering structures, such as reinforced concrete and steel buildings. LDM apply key concepts of classic fracture and damage mechanics on plastic hinges. Therefore, the lumped damage models are quite successful in reproduce actual structural behaviour using concepts well-known by engineers in practice, such as ultimate moment and first cracking moment of reinforced concrete elements. So far, lumped damage models are based in the strain energy equivalence hypothesis, which is one of the fictitious states where the intact material behaviour depends on a damage variable. However, there are other possibilities, such as the energy equivalence hypothesis. Such possibilities should be explored, in order to pursue unique advantages as well as extend the LDM framework. Therewith, a lumped damage model based on the energy equivalence hypothesis is proposed in this paper. The proposed model was idealised for reinforced concrete structures, where a damage variable accounts for concrete cracking and the plastic rotation represents reinforcement yielding. The obtained results show that the proposed model is quite accurate compared to experimental responses.

Design of geocell reinforcement for supporting embankments on soft ground

  • Latha, G. Madhavi
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.117-130
    • /
    • 2011
  • The methods of design available for geocell-supported embankments are very few. Two of the earlier methods are considered in this paper and a third method is proposed and compared with them. In the first method called slip line method, plastic bearing failure of the soil was assumed and the additional resistance due to geocell layer is calculated using a non-symmetric slip line field in the soft foundation soil. In the second method based on slope stability analysis, general-purpose slope stability program was used to design the geocell mattress of required strength for embankment. In the third method proposed in this paper, geocell reinforcement is designed based on the plane strain finite element analysis of embankments. The geocell layer is modelled as an equivalent composite layer with modified strength and stiffness values. The strength and dimensions of geocell layer is estimated for the required bearing capacity or permissible deformations. These three design methods are compared through a design example. It is observed that the design method based on finite element simulations is most comprehensive because it addresses the issue of permissible deformations and also gives complete stress, deformation and strain behaviour of the embankment under given loading conditions.

p-Version Finite Element Analysis of Anisotropic Laminated Plates considering Material-Geometric Nonlinearities (재료-기하비선형을 고려한 이방성 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.319-326
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed for the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted for in the sense of von Karman hypothesis. The material model Is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized for anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The Integrals of Legendre Polynomials we used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several comparative points of view in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic zone

  • PDF

Prediction of Fracture Strains for DP980 Steel Sheets for a Wide Range of Loading Paths (다양한 하중경로에서의 DP980 강판의 파단변형률 예측에 관한 연구)

  • Park, N.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.176-180
    • /
    • 2015
  • The current study is concerned with the prediction of fracture strains for DP980 steel sheets over a wide range of loading paths. The use of DP980 steel is increasing significantly in automotive industries for enhanced safety and higher fuel efficiency. The material behavior of advanced high-strength steels (AHSSs) sheets sometimes show unpredictable and sudden fracture during sheet metal forming. A modified Lou-Huh ductile fracture criterion is utilized to predict the formability of AHSSs because the conventional forming limit diagram (FLD) constructed based on necking is unable to evaluate the formability of AHSSs sheets. Fracture loci were extracted from three dimensional fracture envelopes by assuming the plane-stress condition to evaluate equivalent plastic strains at the onset of fracture for a wide range of loading paths. Three different types of specimens -- pure shear, dog-bone and plane strain grooved -- were utilized for tensile testing to calibrate the fracture model of DP980 steel sheets. Fracture strains of each loading path were evaluated such that there shows little deviation between fracture strains predicted from the fracture model and the experimental measurements. From the comparison, it is clearly shown that the three dimensional fracture envelopes can accurately predict the onset of the fracture of DP980 steel sheets for complicated loading conditions from compressive loading to shear loading and to equibiaxial tensile loading.